Enhance Infrared Photocurrent of PbS Quantum Dot Solar Cells toward the Bottom Subcell of Multi-junction Solar Cells
Haibin Wang a, Takaya Kubo a, Jotaro Nakazaki b, Hiroshi Segawa a b
a Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, Japan, Japan
b University of Tokyo, Japan, Japan
Asia-Pacific International Conference on Perovskite, Organic Photovoltaics and Optoelectronics
Proceedings of Asia-Pacific International Conference on Perovskite, Organic Photovoltaics and Optoelectronics (IPEROP20)
Tsukuba-shi, Japan, 2020 January 20th - 22nd
Organizers: Michio Kondo and Takurou Murakami
Oral, Haibin Wang, presentation 101
DOI: https://doi.org/10.29363/nanoge.iperop.2020.101
Publication date: 14th October 2019

Solution-processed tandem solar cells, that stack two or more single-junction subcells with different band gaps to harvest photons in the full solar spectrum more efficiently, have attracted increasing attention recently. Organic photovoltaics and perovskite solar cells are promising candidates for the top and/or middle subcells of tandem solar cells because the solar cells are able to capture visible and near-infrared photon energy. While PbS and PbSe colloidal quantum dots (CQDs) have been gaining much attention for short-wave infrared solar cells owing to their wide-range bandgap tunability and solution process compatibility. Thus, we have focused on PbS QD/ZnO nanowire (NW) structures with the aim of achieving efficient carrier transport and light absorption in the infrared region simultaneously 1-2. We then investigated the performance of PbS QD/ZnO NW solar cells using PbS CQDs with the first exciton absorption peak locating in the infrared region (940 nm-1840 nm) 3. We recently constructed high-efficiency infrared PbS QD/ZnO NW solar cells with a record high EQE of 47% (at 1560 nm). The solar cell installed with an 870 nm sharp-cut filter yielded a PCE of 2.02 % (Jsc=14.8 mAcm-2; Voc=0.285 V; FF=47.9 %) under a filtered one-sun illumination. Based on these results, we will discuss the potential of PbS QD / ZnO NW solar cells toward the bottom subcell of multi-junction solar cells. 

 

This work was supported as part of the International Joint Research Program for Innovative Energy Technology funded by the Ministry of Economy, Trade and Industry (METI), Japan, and by the New Energy and Industrial Technology Development Organization (NEDO).

  

© Fundació Scito
We use our own and third party cookies for analysing and measuring usage of our website to improve our services. If you continue browsing, we consider accepting its use. You can check our Cookies Policy in which you will also find how to configure your web browser for the use of cookies. More info