Single-component vacuum-deposited organic photodetector for high-performance sensing
Johannes Benduhn a
a Institute of Applied Physics, TU Dresden, Nöthnitzer Straße, 61, Dresden, Germany
Materials for Sustainable Development Conference (MATSUS)
Proceedings of MATSUS Spring 2024 Conference (MATSUS24)
#NextGenPD - Next Generation Photo-and-radiation detectors
Barcelona, Spain, 2024 March 4th - 8th
Organizers: Ardalan Armin and Nicola Gasparini
Invited Speaker, Johannes Benduhn, presentation 234
DOI: https://doi.org/10.29363/nanoge.matsus.2024.234
Publication date: 18th December 2023

Organic semiconductors have proven to be a versatile technology platform and are compatible with high-scale mass production. Vacuum-deposited organic light-emitting diodes (OLEDs) dominate mobile display applications and are superior due to their mechanical flexibility, high contrast, low-cost, and form-free production. Recently, organic photodetectors have attracted much interest since they are directly compatible with the OLED display technology and have excellent potential to complement it. Furthermore, their physical properties, such as semitransparency, flexibility, narrowband detection, and, most importantly, high detectivity, offer new perspectives for optoelectronic sensing and will stimulate new consumer electronics applications.

Typically, organic solar cells and photodetectors are comprised of an electron donating and accepting material to facilitate efficient charge carrier generation. This approach has proven successful in achieving high-performance devices but has several drawbacks. For example, creating the proper donor-acceptor microstructure is critical to achieve the desired performance. However, this is challenging when it comes to upscaling and is considered one of the significant degradation pathways regarding the stability of these devices. Therefore, we investigate a vacuum-deposited oligothiophene A-D-A molecule in a single-component device and find that it can generate free charge carriers with an internal quantum efficiency of 20% already at zero bias. Optimizing the device structure, we achieve specific detectivities of 1013 Jones (based on noise measurements), high speed (f-3dB = 330 kHz), and linear dynamic range (190 dB). To unveil the charge carrier generation within this material system, we employ ultrafast transient absorption spectroscopy and quantum chemical calculations and find that free charge carriers are already formed at time scales below one picosecond. Exhibiting this excellent performance and using the simple device structure, such single-component devices are perfect candidates for application.

© FUNDACIO DE LA COMUNITAT VALENCIANA SCITO
We use our own and third party cookies for analysing and measuring usage of our website to improve our services. If you continue browsing, we consider accepting its use. You can check our Cookies Policy in which you will also find how to configure your web browser for the use of cookies. More info