Publication date: 15th December 2025
Metal halide perovskites (MHPs) continue to redefine the landscape of solution-processed optoelectronics, yet their implementation remains hindered by instability, compositional fragility, and stringent synthesis requirements. This invited contribution presents an unconventional in situ synthesis framework that directly generates perovskite nanocrystals (NCs) within reactive inorganic–organic matrices under ambient, glovebox-free conditions.
The method exploits metal–organic scaffolds to guide NC nucleation and growth, enabling precise control over composition, dimensionality, and defect passivation across a broad range of halide (Cl⁻, Br⁻, I⁻) and A-site (Cs⁺, MA⁺, FA⁺) chemistries. The resulting nanocomposites display exceptional environmental stability, strongly suppressed defect densities, and near-unity photoluminescence quantum yields in selected systems. Incorporation of bulky organic cations extends the approach to low-dimensional and 0D lead-free perovskites, including highly robust Sn-based phases and Ag/Bi double-perovskite nanocrystals such as Cs₂AgBiBr₆, which additionally exhibit promising photocatalytic responses. [1-5]
Because the chemistry proceeds at room temperature and is inherently compatible with roll-to-roll deposition, the platform provides a scalable and sustainable route for large-area perovskite manufacturing. Its reproducibility and tunability also make it well suited for automation and machine-learning-assisted discovery. Demonstrated applications span photovoltaics, LEDs, lasing [6], down-conversion, photocatalysis [4], and gas sensing, showcasing the potential of in situ synthetic design to expand the functional space of perovskite nanomaterials and enable new device architectures.
Low-demanding in situ crystallization method for tunable and stable perovskite nanoparticle thin films. J. Noguera-Gomez, I. Fernandez-Guillen, P. F. Betancur, V. S. Chirvony, P. P. Boix, R. Abargues. Matter, 2022, 5, 3541-3552. https://doi.org/10.1016/j.matt.2022.07.017
Protocol for the synthesis of perovskite nanocrystal thin films via in situ crystallization method J. Noguera-Gómez, P. P. Boix, R. Abargues. STAR Protocols, 4 (4), 102507 (2023). https://doi.org/10.1016/j.xpro.2023.102507
Passivation Mechanism in Highly Luminescent Nanocomposite‐Based MAPbBr3 Perovskite Nanocrystals. J. Noguera‐Gómez, V. Sagra, V. S. Chirvony, M. Minguez‐Avellan, M. E. Changarath, J. F. Sánchez‐Royo, J. P. Martínez‐Pastor, P. P. Boix, R. Abargues. Small Science 2025. 2400529. https://doi.org/10.1002/smsc.202400529
Perovskite Nanocomposite: A Step Toward Photocatalytic Degradation of Organic Dyes. M. Minguez-Avellan, N. Farinós-Navajas, J. Noguera-Gómez, V. Sagra-Rodríguez, M. Vallés-Pelarda, C. Momblona, T. S. Ripolles, P. P. Boix, R. Abargues. Sol. RRL 2024, 8, 2400449 https://doi.org/10.1002/solr.202400449
Chemically driven dimensionality modulation on hybrid tin (II) halide perovskites microcrystals
R. I. Sánchez-Alarcón, O. E. Solís, M. C. Momblona-Rincón, T. S. Ripollés, J. P. Martínez-Pastor, R. Abargues, P. P. Boix. J. Mater. Chem. C, J. Mater. Chem. C, 2024, 12, 7605-7614. https://doi.org/10.1039/D4TC00623B
Photon Recycling Triggered Amplified Spontaneous Emission in MAPbBr3-Ni(AcO)2 Nanocomposite Waveguides S. Soriano-Díaz, J. Noguera-Gómez, J. P. Martínez-Pastor, P. P. Boix, R. Abargues, I. Suárez. Laser & Photonics Reviews 2025 https://doi.org/10.1002/lpor.202401920
