Imide-Anti-Perovskites with tunable direct bandgaps as potential solar-cell materials.
Florian Wolf a, Thanh Chau a, Dan Han a, Stefan S. Rudel a, Yuxuan Yao b c, Harald Oberhofer c, Thomas Bein a, Hubert Ebert a, Wolfgang Schnick a
a University of Munich (LMU), Department of Chemistry and Center for Nanoscience (CeNS), 81377 Múnich, Alemania, Múnich, Germany
b Chair for Theoretical Chemistry and Catalysis Research Center, Technical University Munich
c Chair for Theoretical Physics VII, University of Bayreuth
Materials for Sustainable Development Conference (MATSUS)
Proceedings of MATSUS Spring 2024 Conference (MATSUS24)
#NextGenSolar - Innovations beyond ABX3 perovskites: Materials development, Photophysics, and Devices
Barcelona, Spain, 2024 March 4th - 8th
Organizers: Silvia Motti and Marcello Righetto
Oral, Florian Wolf, presentation 148
DOI: https://doi.org/10.29363/nanoge.matsus.2024.148
Publication date: 18th December 2023

Recently, inorganic anti-perovskites with the formula X3AN (X = Ba, Sr, Ca, Mg; A = As, Sb) have been reported to exhibit excellent optoelectronic properties like small carrier effective masses, suitable direct bandgaps, high optical absorption coefficients as well as allowed optical transitions at band edges. These properties can be tuned depending on the X and A site. Extending the composition to quaternary anti-perovskites (X6AA′N2) enables the synthetic possibilities for new materials.[1,2]

Herein we report on the ammonothermal synthesis of EA5Pn2(NH)2. The three newly synthesized compounds Ca5AsSb(NH)2, Ca5AsBi(NH)2 and Sr5AsBi(NH)2 crystallize in the tetragonal space group P4/mmm. Their crystal structure was solved and refined by scXRD. Raman spectroscopy was used to further determine structural elements and verify the presence of imide-groups. Further investigations were carried out using powder X-ray diffraction, UV/Vis-spectroscopy, and density functional theory calculations.

The materials exhibit direct bandgaps in the range between 1.90 eV and 1.14 eV. By composition variation of the A-site elements as well as the X-site elements, the effective band gaps can be tuned. Hybrid density functional theory calculations verify the direct nature of the band gap, indicating large band dispersions through the enhanced covalency of the pnictides, benefiting the carrier transport. In summary, these new Imide-anti-perovskite materials exhibit interesting properties as efficient light harvesting materials for single junction solar cells.

© FUNDACIO DE LA COMUNITAT VALENCIANA SCITO
We use our own and third party cookies for analysing and measuring usage of our website to improve our services. If you continue browsing, we consider accepting its use. You can check our Cookies Policy in which you will also find how to configure your web browser for the use of cookies. More info