Martin Green is currently a Scientia Professor at the University of New South Wales and Director of the Australian National Energy Agency (ARENA) supported Centre for Advanced Photovoltaics. He was formerly a Director of CSG Solar, a company formed specifically to commercialise the University’s thin-film, polycrystalline-silicon-on-glass solar cell. His group's contributions to photovoltaics are well known including the development of the world’s highest efficiency silicon solar cells and the successes of several spin-off companies.


Alexander W. Achtstein studied Physics at University of Augsburg and Ludwigs Maximilians University Munich (LMU). He recieved a PhD from Technical University of Berlin in 2013. After a postdoc period at TU Delft he returned to TU Berlin. His research concentrates on the linear and nonlinear optical as well as electronic properties of 2D semiconductors, with a focus on II-VI nanosheets and transition metal dichalcogenides.
Prof. Adachi obtained his doctorate in Materials Science and Technology in 1991 from Kyushu University. Before returning to Kyushu University as a professor of the Center for Future Chemistry and the Department of Applied Chemistry, he held positions as a research chemist and physicist in the Chemical Products R&D Center at Ricoh Co., a research associate in the Department of Functional Polymer Science at Shinshu University, research staff in the Department of Electrical Engineering at Princeton University, and an associate professor and professor at Chitose Institute of Science and Technology. He became a distinguished professor at Kyushu University in 2010, and his current posts also include director of Kyushu University’s Center for Organic Photonics and Electronics Research (OPERA) since 2010 and program coordinator of Kyushu University’s Education Center for Global Leaders in Molecular Systems for Devices and director of the Fukuoka i3 Center for Organic Photonics and Electronics Research since 2013.
Dr Tom Aernouts is R&D leader of the Thin Film Photovoltaics group at imec. Over the last few years this activity has grown steadily with state-of-the-art work in organic solar cells and recently also perovskite-based photovoltaics, next to inorganic materials like Kesterites for future replacement of the currently strongly growing CIGS thin film solar cells. Also the lab environment was drastically improved with setting-up the O-line infrastructure in 2009 at imec, allowing the processing and characterization of thin film solar cells and modules with area up to 15 x 15 cm². A next upgrade in 2018 enabled to extend the device size to 35x35cm². Dr Aernouts earned his Master of Science and PhD degree in Physics (in 2006) at the Catholic University of Leuven, Belgium. Firstly, he worked on organic oligomer-based diode structures, afterwards continuing his research on organic photovoltaics at imec. There, his work focused on the processing and characterization of polymer-based organic solar cells and monolithic modules, introducing techniques like screen and inkjet printing. He has authored or co-authored more than 80 journal publications, book chapters and conference contributions. Also, his research group participates on a regular basis in a broad range of local and international projects, with the most recent example the coordination of the European H2020 project ESPResSo.
Joel W. Ager III is a Staff Scientist in the Materials Sciences Division of Lawrence Berkeley National Laboratory and an Adjunct Full Professor in the Materials Science and Engineering Department, UC Berkeley. He is a Principal Investigator in the Electronic Materials Program and in the Joint Center for Artificial Photosynthesis (JCAP) at LBNL and in the Berkeley Educational Alliance for Research in Singapore (BEARS) where he serves as Co-Lead PI of the eCO2EP project with Cambridge University. He graduated from Harvard College in 1982 with an A.B in Chemistry and from the University of Colorado in 1986 with a PhD in Chemical Physics. After a post-doctoral fellowship at the University of Heidelberg, he joined Lawrence Berkeley National Laboratory in 1989. His research interests include the fundamental electronic and transport properties of semiconducting materials, discovery of new photoelectrochemical and electrochemical catalysts for solar to chemical energy conversion, and the development of new types of transparent conductors. Professor Ager is a frequent invited speaker at international conferences and has published over 300 papers in refereed journals. His work is highly cited, with over 30,000 citations and an h-index of 85 (Google Scholar).
Dr. Mahshid Ahmadi received her Ph.D. from Nanyang Technological University, Singapore in 2013. She then worked as a research technology consultant in a start-up solar cell company (HEE) in Dallas, Texas, USA. She is currently working as an assistant professor at Joint Institute for Advanced Materials (JIAM), Department of Materials Science, University of Tennessee, Knoxville. Her research interest includes materials development and electronic device fabrication. Specially, her current research focuses on organic-inorganic halide perovskite photovoltaics and
high energy radiation detectors.
Dr. Caroline Ajo-Franklin is Professor in the Department of BioSciences at Rice University. Her scientific training started in Chemistry; she earned a B.S. in Chemistry at Emory University in 1997 and received her Ph.D. in Chemistry from Stanford University in 2004. She then trained as postdoctoral fellow in Synthetic Biology with Pam Silver at Harvard Medical School, and moved to Lawrence Berkeley Lab in 2007 to start her independent research career, and then in 2019, she moved to Rice University as a Professor with appointments in BioSciences, Bioengineering and the Systems, Synthetic, and Physical Biology Program. During her career, has built a strongly interdisciplinary research program focused on molecular-level understanding and engineering of the interface between living organisms and non-living materials.




She obtained a PhD degree in Azerbaijan. She has spent two years in the Institute of Plant Biology, Szeged, Hungary as UNESCO and ITC fellow. She has joined the Molecular Plant Biology unit at the University of Turku as a postdoctoral research fellow in 2002. Currently she is acting as a PI of the 'Photosynthetic microbes' team. Since 2017 she is Associated Professor of Molecular Plant Biology. She mainly focuses on cyanobacterial / algal research and the alternative electron-transport routes, which are heavily involved in regulation of photosynthesis via maintaining redox homeostasis in cells. She is a co-chair of the Nordic Center of Excellence “Towards Versatility of Aquatic Production Platforms: Unlocking the Value of Nordic Bioresources” (NordAqua, www.nordaqua.fi) funded by NordForsk (2017-2022) and a chair of the Biocity Turku Research Programme “Advanced Bioresources and Smart Bioproducts – Towards Sustainable Bioeconomy” (SmartBio, www.smartbio.fi).
Osbel Almora graduated of Physics from the University of Havana, Cuba, in 2013 and received his Ph.D. in 2020 from both the Universitat Jaume I of Castelló, Spain, and the Friedrich‐Alexander Universität Erlangen‐Nürnberg (FAU), in Germany. His main research interests are the characterization and modeling of energy materials and devices, e.g., perovskite solar cells, and more recently he is been focused on the development of optoelectronic characterization techniques, such as the light intensity modulated impedance spectroscopy (LIMIS). He is one of the initiating members of the "Emerging PV reports" project (emerging-pv.org), launched in 2020.
Dr. Stéphane Altazin got a Master degree in Micro and Nanoelectronics from University of Grenoble (F) with a thesis on quantum optic logical gate carried out at University of Bristol (UK). Thereafter he performed a Ph.D. thesis at CEA-LITEN in Grenoble on modelling of organic diodes and photodiodes. In 2012 he joined Fluxim AG in Switzerland as a technical consultant and has contributed to the further development of the simulation software SETFOS for OLEDs and organic solar cells.
Agustin O. Alvarez got his Licentiate degree in Physics at the University of Córdoba, Argentina, in 2017. His final degree project was in the Medical Physics field. Subsequently, he worked for 17 months in the Sustainable Energy Laboratory, University of Córdoba, in the field of Lithium-Ion Batteries. Since September 2018, he is doing his PhD under the supervision of Prof. Francisco Fabregat-Santiago and co-direction of Elena Mas Marzá at the Institute of Advanced Materials (INAM), Spain. He is currently focused on the characterization and modelling of optoelectronic devices including perovskite and silicon solar cells and LEDs.
Amirav is an expert in the use of hybrid nanostructures for renewable energy generation, in particular photocatalytic solar-to-fuel conversion. She has demonstrated success in designing sophisticated heterostructures for the water reduction half reaction. She is particularly interested in photocatalysis on the nano scale and related photophysical and photochemical phenomena. The laboratory’s cutting-edge synthetic effort is combined with development of nontraditional techniques for mechanistic study of charge transfer pathways, and fundamental research on reaction mechanism.
Dr. Teresa Andreu is senior researcher at the Energy Storage group of IREC. She received the degree in Chemistry (1999) and PhD in Materials Science (2004) from the University of Barcelona. After a period in industry and academia, she joined IREC in 2009. Her current research is focused on emerging technologies for hydrogen generation and carbon dioxide conversion (photoelectrochemistry, heterogeneous catalysis and plasma-catalysis), solar fuels and redox flow batteries. She has been part-time lecturer at the materials department at UB (2014-2017) and UPC (2017-2019) and she is the author of more than 100 scientific publications and 4 patents.
Denis Andrienko is a project leader at the Max Planck Institute for Polymer Research working on the development of multiscale simulation techniques for charge and exciton transport in conjugated polymers as well as small molecular weight organic semiconductors. After completing his Masters degree in the University of Kiev he obtained his first PhD in optics/structural transitions in liquid crystals from the Institute of Physics, Ukraine (group of Prof. Reznikov) and his second PhD on computer simulations of complex fluids from the University of Bristol, UK (group of Prof. M. P. Allen). He joined MPIP as a Humboldt Fellow doing theoretical studies of the slippage effect, mechanical properties of polyelectrolyte microcapsules, and effective interactions in colloidal systems. Dr. Andrienko has published over eighty journal articles and four book chapters.
Juan A. Anta is Full Professor of Physical Chemistry at the University Pablo de Olavide, Seville, Spain. He obtained a BA in Chemistry in the Universidad Complutense of Madrid, Spain and carried out his PhD research at the Physical Chemistry Institut of the National Research Council of Spain. In 1997 and 1998 he was a postdoctoral fellow in the Department of Theoretical Chemistry of the University of Oxford and from mid 1999 to mid 2000 he was research assistant at the Department of Chemistry of the Imperial College, London. His research focuses on solar cell modelling, random-walk methods applied to electron transport in nanostructured devices and disordered semiconductors, and device modeling in Dye-sensitised and perovskite solar cells
Thomas D. Anthopoulos is a Professor of Material Science and Engineering at King Abdullah University of Science and Technology (KAUST) in Saudi Arabia, where he has been since January 2017. He received his B.Eng. and D.Phil. degrees from Staffordshire University in UK. He then spent two years at the University of St. Andrews (UK) where he worked on new materials for application in organic light-emitting diodes before join Philips Research Laboratories in The Netherlands to focus on organic transistors and printed microelectronics. From 2006 to 2017 he held faculty positions at Imperial College London (UK), first as an EPSRC Advanced Fellow and later as a Reader and Professor of Experimental Physics. His research interests are diverse and cover the development and application of novel processing paradigms and the physics, chemistry & application of functional materials.
Yoichi Aoki is a senior research chemist in the Advanced Materials Laboratories at Toray Industries. He received his PhD degree in engineering from Kyushu University in 2017. He joined R&D Headquarters in Rohm from 2007 to 2017, during which he was engaged in development of medical POCT for diabetes, organic solar cells, and discrete module of thermal printheads. Currently his research interests are organic photovoltaics for indoor application like a wireless sensor network and focuses on printed organic electronics.
Ivan Aprahamian was born and raised in Jerusalem. He received all his degrees (BSc-1998, MSc-2000, and PhD-2005) from the Hebrew University of Jerusalem. His doctoral research was conducted under the supervision of Professors Mordecai Rabinovitz and Tuvia Sheradsky, and focused on NMR spectroscopic studies of alkali metal reduced polycyclic aromatic hydrocarbons. He then carried out postdoctoral research in Professor J Fraser Stoddart's Group at UCLA (2005-2008), where he focused on the synthesis of switchable and highly-ordered interlocked molecules in the form of bistable [n]rotaxanes. He joined the Department of Chemistry at Dartmouth College as an Assistant Professor in August 2008, and was promoted to Associate Professor with tenure in 2014, and Full Professor in 2019. He is the recipient of numerous awards including the NSF CAREER award,Cram Lehn Pedersen Prize in Supramolecular Chemistry, Humboldt Research Fellowship, and is a fellow of the RSC.
Ryota ARAI was born in Hiroshima, Japan in 1983. He got a master's degree from Kyushu University in 2008 under the supervision of Prof. Masahiro Irie and Kenji Matsuda . In 2008 he joined RICOH Co. Ltd., and engaged in development of Organc photoconductor materials and organic photovoltaic materials. Now, He is working for Ricoh and is completing a PhD at Kyushu University.
Vincent Artero was born in 1973. He is a graduate of the Ecole Normale Supérieure (Ulm; D/S 93) and of the University Pierre et Marie Curie (Paris 6). He received the Ph.D. degree in 2000 under the supervision of Prof. A. Proust. His doctoral work dealt with organometallic derivatives of polyoxometalates. After a postdoctoral stay at the University of Aachen (Aix la Chapelle) with Prof. U. Kölle, he joined in 2001 the group of Prof. M. Fontecave in Grenoble with a junior scientist position in the Life Science Division of CEA. Since 2016, he is Research Director at CEA and leads the SolHyCat group. His current research interests are in bio-inspired chemistry including catalysis related to hydrogen energy and artificial photosynthesis.
Vincent Artero received the "Grand Prix Mergier-Bourdeix de l'Académie des Sciences" in 2011 and has been granted with a Consolidator Grant from the European Research Council (ERC, photocatH2ode project 2012-2017). He's a member of the Young academy of Europe (YAE). He currently acts as Chair of the Scientific Advisory Board of the ARCANE Excellence Laboratory Network (LABEX) for bio-driven chemistry in Grenoble and as co-head of the French network (CNRS-Groupement de recherche) on Solar Fuels. Since 2016, Vincent Artero is associate editor of the Royal Society of Chemistry journal "Sustainable Energy and Fuels". From January 2018 onward, he actsas associate editor of the Royal Society of Chemistry flagship journal "Chemical Science"
Harry Atwater is the Howard Hughes Professor of Applied Physics and Materials Science at the California Institute of Technology. Atwater’s scientific interests span light-matter interactions from quantum nanophotonics, two-dimensional materials and metasurfaces to solar photovoltaics and artificial photosynthesis. Atwater is an early pioneer in nanophotonics and plasmonics; he gave the name to the field of plasmonics in 2001. He currently serves as Director of the Liquid Sunlight Alliance, a DOE Solar Fuels Hub project, and was the founding Director of the Resnick Sustainability Institute at Caltech. He also chairs the Breakthrough Starshot Lightsail Committee and is a PI of the Caltech Space Solar Power Project.
Atwater has laid the foundations for plasmonic and negative index metamaterials, as well as tunable nanophotonic materials and metasurfaces. He has pioneered principles for light management and high efficiency solar cell design. He was the co-founder of Alta Devices, a solar photovoltaics company in Santa Clara, CA that holds the current world records for 1 Sun single and dual junction solar cell efficiency as well as solar module efficiency.
As of October 2020, he has authored or co-authored more than 500 publications and 60 patents cited in aggregate > 70,000 times and marked by citation metrics: h index = 95 (Web of Science) and h = 118 (Google Scholar), and he is an ISI Highly Cited Researcher (2014-2019). His group’s advances in the solar energy and plasmonics field have been reported in Scientific American, Science, Nature Materials, Nature Photonics and Advanced Materials.
Harry Atwater is a Member of US National Academy of Engineering and is also a Fellow of the American Physical Society, the Materials Research Society, SPIE and the National Academy of Inventors. Atwater has been honored by awards including: Kavli Innovations in Chemistry Lecture Award, American Chemical Society (2018); APS David Adler Lectureship for Advances in Materials Physics (2016); Julius Springer Prize in Applied Physics (2014); Fellowship from the Royal Netherlands Academy of Arts and Sciences (2013); ENI Prize for Renewable and Nonconventional Energy (2012); SPIE Green Photonics Award (2012); MRS Kavli Lecturer in Nanoscience (2010); and the Popular Mechanics Breakthrough Award (2010). He also received the Joop Los Fellowship from the Dutch Society for Fundamental Research on Matter (2005), the A.T.&T. Foundation Award (1990), the NSF Presidential Young Investigator Award (1989) and the IBM Faculty Development Award in 1989-1990.
He is the founding Editor in Chief for the journal ACS Photonics, and is Associate Editor for the IEEE Journal of Photovoltaics. In 2006 he founded the Gordon Research Conference on Plasmonics, for which he served as chair in 2008. Professor Atwater has worked extensively as a consultant for industry and government and has actively served the materials community in a variety of roles, including President of the Materials Research Society in 2000, MRS Meeting Chair in 1997, and a member of the Board of Trustees of the Gordon Research Conferences. He also teaches graduate level Applied Physics classes at Caltech in nanophotonics, solid-state physics and device physics.
Professor Atwater received his B. S., M. S. and Ph.D. degrees from the Massachusetts Institute of Technology in 1981, 1983 and 1987, respectively. He held the IBM Postdoctoral Fellowship at Harvard University from 1987-88 and has been a member of the Caltech faculty since 1988.




Dr. Takeru Bessho is a Project Lecture at the Research Center for Advanced Science and Technology (RCAST) at the University of Tokyo, Japan, who was granted Doctor of Engineering in 2009 from the Shibaura Institute of Technology as developments of optoelectronic device properties with organic-inorganic hybrid materials. His affiliations were SONY Corporation as a Researcher at
Advanced Materials Laboratories from 2011 to 2015, and École polytechnique fédérale de Lausanne as a Research Associate at laboratory of Prof. Michael Grätzel from 2009 to 2011. His main interest is on device engineering with organic-inorganic materials and its improvement of energy conversion efficiency as solar cells.
Udo Bach is a full professor at Monash University in the Department of Chemical Engineering; the Deputy Director of the ARC Centre of Excellence in Exciton Science and an ANFF-VIC Technology Fellow at the Melbourne Centre of Nanofabrication (MCN). He received his PhD from the Swiss Federal Institute of Technology (EPFL, Switzerland) working in the research group of Prof Michael Grätzel and worked for 3 years in a technology start-up company in Dublin (Ireland). Subsequently he spent 15 months as a postdoc in the group of Prof. Paul Alivisatos in UC Berkeley (USA) before moving to Monash University in November 2005 to establish his own research group.
Prof Bach has a strong background in the area of photovoltaics and nanofabrication. He is involved in fundamental and applied research in the area of perovskite and dye-sensitized solar cells. He has additional research activities in the area of nanofabrication, DNA-directed self-assembly, nanoprinting, plasmonics for sensing, photovoltaic applications and combinatorial photovoltaic materials discovery.
Gerd Bacher actually holds the chair of electronic materials and nanostructures at the Faculty of Engineering at Duisburg-Essen University. His research career started at Stuttgart University in the 1990s working on optical spectroscopy on epitaxially grown quantum wells, which was then extended to nanotechnology and nanodevice fabrication for optoelectronic applications at Würzburg University and Tokyo Institute of Technology. Being full professor since 2003, he is currently working on a wide diversity of nanomaterials, including 2D materials and nanocrystals, for applications in optoelectronics, information science and energy science. He is author or co-author of more than 250 articles in peer-reviewed journals.
Dowon Bae received his BSc and MSc (Honors) from the Russian State Technological University named after K.E. Tsiolkovsky (current - Moscow Aviation Institute). After research activities within solar cells at the LG Innotek (South Korea; 2008 – 2012), he joined the VILLUM Center for the Science of Sustainable Fuels and Chemicals at the Technical University of Denmark (DTU), where he conducted his PhD study and Postdoc under the supervision of Prof. Ib Chorkendorff. His research has focused on PEC (photoelectrochemical) device design for solar-fuel applications. From 2018 to 2020, he has worked as a Postdoc at the Delft University of Technology with LEaDing Fellowship (Marie-Curie COFUND) support. He has held academic appointment as an Assistant Professor at Heriot-Watt University from 2020. His research concerns PEC devices and rechargeable flow-battery systems.
Dr. Bag is currently an assistant professor of Department of Physics and an adjunct faculty of Centre of Nanotechnology at Indian Institute of Technology Roorkee, India. He got his Bachelor degree in Electrical Engineering from Jadavpur University and Master degree in Physics from University of Pune in 2003 and 2006 respectively. After completing PhD from Jawaharlal Nehru Centre for Advanced Scientific Research, India in the field of Material Science in 2011 he did few years of postdoctoral work at University of Massachusetts Amherst, USA and at Lund University, Sweden before joining to IIT Roorkee in 2016.
Dr. Bag has worked on multi-disciplinary projects during PhD and postdoctoral works with multiple research groups. His expertise varies from device fabrication to various characterization including theoretical modelling and simulations. He has been working in the field of organic electronics for last fourteen years and hybrid perovskite-based materials for energy harvesting for last six years. His current research laboratory known as Advanced Research in Electrochemical Impedance Spectroscopy (AREIS) at IIT Roorkee is focusing on the impedance spectroscopy measurement of various kinds of optoelectronic materials along with the fabrication and optimization of large area thin film based solar cells and LEDs.


Professor Uri Banin is the incumbent of the Larisch Memorial Chair at the Institute of Chemistry and the Center for Nanoscience and Nanotechnology at the Hebrew University of Jerusalem (HU). Dr. Banin was the founding director of the Harvey M. Kreuger Family Center for Nanoscience and Nanotechnology (2001-2010) and led the program of the Israel National Nanotechnology Initiative at HU (2007-2010). He served on the University’s Executive Committee and on its board of managers and was a member of the board of Yissum. He served on the scientific advisory board of Nanosys. In 2009 Banin was the scientific founder of Qlight Nanotech, a start-up company based on his inventions, developing the use of nanocrystals in display and lighting applications. Since 2013, Banin is an Associate Editor of the journal Nano Letters. His distinctions include the Rothschild and Fulbright postdoctoral fellowships (1994-1995), the Alon fellowship for young faculty (1997-2000), the Yoram Ben-Porat prize (2000), the Israel Chemical Society young scientist award (2001), the Michael Bruno Memorial Award (2007-2010), and the Tenne Family prize for nanoscale science (2012). He received two European Research Council (ERC) advanced investigator grant, project DCENSY (2010-2015), and project CoupledNC (2017-2022). Banin’s research focuses on nanoscience and nanotechnology of nanocrystals and he authored over 180 scientific publications in this field that have been extensively cited.


Alex Barker is a researcher in the groups of Annamaria Petrozza and Guglielmo Lanzani at the Center for Nanoscience and Technology in Milan, Italy. He received his PhD from Victoria University of Wellington (New Zealand). His core research interests focus on ultrafast spectroscopy of hybrid organic perovskites and organic photovoltaics.
Andrew M. Beale is a Professor of Inorganic Chemistry and Group leader at the Research Complex at Harwell. He is also a Co-I and principal academic responsible (since 2018) for the Harwell activities of the EPSRC-sponsored UK Catalysis Hub. His interests lie in establishing structure-function relationships in heterogeneous materials, including catalytic solids and energy storage materials as a function of both time and space (micron, to sub-micron length scales) using both X-ray & optical spectroscopic and scattering methods and often applied under operando conditions. In 2012 he started Finden Ltd providing high-end characterisation of solid-state functional materials spanning the fields of catalysis, energy, automotive parts and pharmaceuticals, typically at the critical juncture of scale-up to pilot plant. He has many collaborative projects with the STFC facilities at the Rutherford Appleton Laboratory.
Thomas Bein obtained his PhD in Chemistry from the University of Hamburg (Germany) and the Catholic University Leuven (Belgium) in 1984. His major field of study encompassed catalytically active nanoclusters in porous hosts. He continued his studies as Visiting Scientist at the DuPont Central Research and Development Department in Wilmington, DE (USA). From 1986 to 1991 he was Assistant Professor of Chemistry at the University of New Mexico in Albuquerque (USA). In 1991 he joined Purdue University (Indiana) as Associate Professor, and was promoted to Full Professor of Chemistry in 1995. In 1999 he was appointed Chair of Physical Chemistry at the University of Munich (LMU), where he also served as Director of the Department of Chemistry. His current research interests lie in the synthesis and physical properties of functional nanostructures, with an emphasis on porous materials for targeted drug delivery and nanostructured materials for solar energy conversion. He has authored and co-authored more than 300 peer-reviewed publications.




Magnus Berggren received his MSc in Physics in 1991 and graduated as PhD (Thesis: Organic Light Emitting Diodes) in Applied Physics in 1996, both degrees from Linköping University. He then joined Bell Laboratories in Murray Hill, NJ in the USA, for a one-year post doc period focusing on the development of organic lasers and novel optical resonator structures.
In 1997 he teamed up with Opticom ASA, from Norway, and former colleagues of Linköping University to establish the company Thin Film Electronics AB (ThinFilm). From 1997 to 1999 he served Thin Film as its founding managing director and initiated the development of printed electronic memories based on ferroelectric polymers.
After this, he returned to Linköping University and also to a part time manager at RISE Acreo. In 1999, he initiated the research and development of paper electronics, in part supported by several paper- and packaging companies. Since 2002, he is the professor in Organic Electronics at Linköping University and the director of the Laboratory of Organic Electronics, today including close to 90 researchers.
Magnus Berggren is one of the pioneers of the Organic Bioelectronics and Electronic Plants research areas and currently he is the acting director of the Strategic Research Area (SFO) of Advanced Functional Materials (AFM) at LiU. In 2012 Magnus Berggren was elected member of the Royal Swedish Academy of Sciences and in 2014 he received the Marcus Wallenberg Price. He is also the co-founder of 7 companies: ThinFilm, Invisense, DP Patterning, Consensum Prodcution, OBOE IPR, OBOE Players and Ligna Energy.




Sayan Bhattacharyya is Professor of the Department of Chemical Sciences, IISER Kolkata since September 2019. He joined the Institute as Assistant Professor in April 2010 after obtaining his Ph.D. at the Indian Institute of Technology, Kanpur, India in 2006 and postdoctoral research at Bar-Ilan University, Israel (2006-2008, advisor: Prof. Em. Aharon Gedanken) & Drexel University, USA (2008-2010, advisor: Prof. Yury Gogotsi). He was visiting Professor at University of Goettingen, Germany in 2011 and the founder chair of the Centre for Advanced Functional Materials at IISER Kolkata, 2016-2020. Prof. Bhattacharyya is a Solid State and Physical Chemist devoted to the advancements in energy conversion and storage. His current interests are electrocatalysis, photovoltaics and opto-electronics. A combination of wet-chemical synthesis and self-assembly of smart nanomaterials, structure-property correlation and device applications are used to attain these research goals. He is elected as the Life Fellow of the Indian Chemical Society since 2020. In 2017, Dr. Bhattacharyya has been highlighted as one of the Emerging Investigators by the Journal of Materials Chemistry A, Royal Society of Chemistry. He has received several unsolicited media coverage on his scientific research work. He is member of the American Chemical Society, American Nano Society, Chemical Research Society of India, Association for Iron & Steel Technology, and American Ceramic Society, USA.
Juan Bisquert (pHD Universitat de València, 1991) is a Professor of applied physics at Universitat Jaume I de Castelló, Spain. He is the director of the Institute of Advanced Materials at UJI. He authored 360 peer reviewed papers, and a series of books including . Physics of Solar Cells: Perovskites, Organics, and Photovoltaics Fundamentals (CRC Press). His h-index 95, and is currently a Senior Editor of the Journal of Physical Chemistry Letters. He conducts experimental and theoretical research on materials and devices for production and storage of clean energies. His main topics of interest are materials and processes in perovskite solar cells and solar fuel production. He has developed the application of measurement techniques and physical modeling of nanostructured energy devices, that relate the device operation with the elementary steps that take place at the nanoscale dimension: charge transfer, carrier transport, chemical reaction, etc., especially in the field of impedance spectroscopy, as well as general device models. He has been distinguished in the 2014-2019 list of ISI Highly Cited Researchers.
Shannon Boettcher is currently an Associate Professor in Chemistry at the University of Oregon. His research interests center on developing materials for solar energy conversion and storage. Current efforts focus on the synthesis and study of heterogeneous electrocatalysts with precise molecular and nanoscale structures, the development of alternative deposition routes for high-performance III-V semiconductors such as GaAs, and on understanding the details of interfaces between semiconductors and electrocatalysts in oxygen and hydrogen evolving photoelectrodes. Boettcher received his B.A. in Chemistry at the University of Oregon in 2003 where he was a Barry M. Goldwater Scholar. He received his Ph.D. in Inorganic Chemistry with Galen Stucky at UC Santa Barbara in 2008 where he was an NSF Graduate Research and UC Chancellor's Fellow. As a Kavli Nanoscience Institute Prize Postdoctoral Scholar, he studied three-dimensional Si structures for solar energy conversion and storage at the California Institute of Technology working with Nate Lewis and Harry Atwater. In 2010, he joined the Chemistry Department at the University of Oregon and in 2011 was named one of 18 DuPont Young Professors worldwide.
Hendrik (Henk) Bolink obtained his PhD in Materials Science at the University of Groningen in 1997 under the supervision of Prof. Hadziioannou. After that he worked at DSM as a materials scientist and project manager in the central research and new business development department, respectively. In 2001 he joined Philips, to lead the materials development activity of Philips´s PolyLED project.
Since 2003 he is at the Instituto de Ciencia Molecular (ICMol )of the University of Valencia where he initiated a research line on molecular opto-eletronic devices. His current research interests encompass: inorganic/organic hybrid materials such as transition metal complexes and perovskites and their integration in LEDs and solar cells.
1. Personal details Prof. Dr. Mischa Bonn Max Planck Institute for Polymer Research Ackermannweg 10 D-55128 Mainz Male; born, 25/01/71, Nijmegen (NL), married +1. Nationality: Dutch (NL) 2. Education Undergraduate: University of Amsterdam; MSc in Physical Chemistry (highest honors), 10/05/93 Graduate: AMOLF / University of Eindhoven; PhD in Physical Chemistry, 18/12/96 Postdoctoral: Fritz Haber (Max Planck) Institut (Wolf/Ertl group), Berlin, Germany, 1997�1999 Postdoctoral: Columbia University (Heinz group) NY, USA, 1998-2001 (totaling ~6 months). 3. Appointments 4/2011-present Director at the Max Planck Institute for Polymer Research, Mainz, Germany 5/2013-present Honorary Professor (Chemistry Dept.) University of Mainz 6/2005�present Extraordinary Professor (Physics Dept.) University of Amsterdam 1/2004�3/2012 Group Leader at FOM-Institute for Atomic and Molecular Physics 1/2003�1/2004 Scientific Advisor at FOM-Institute for Plasma Physics �Rijnhuizen� 1/2003�9/2009 Associate professor (tenured) at Leiden University (Chemistry Dept.) 8/1999�12/2002 Assistant professor (fixed term) at Leiden University (Chemistry Dept.)
He received his PhD (1995) in physical chemistry from Linz university, joined the group of Prof Alan Heeger at UCSB for a sabbatical, and continued to work on all aspects of organic semiconductor spectroscopy as assistant professor at Linz university with Prof. Serdar Sariciftci. He joined the SIEMENS research labs as project leader for organic semiconductor devices in 2001 and joined Konarka in 2004, where he was holding the position of the CTO before joining university.
He is author and co-author of more than 150 papers and 200 patents and patent applications, and finished his habilitation in physical chemistry in 2003.
Guy Brammertz graduated in 1999 from the University of Liège (Belgium) in Applied Physics. In 2003 he obtained his Ph.D. from the University of Twente (The Netherlands) defending a thesis about his work on superconducting Josephson junction photon detectors carried out for the European Space Agency. He then joined imec in 2004, where he first was involved in the LogicDram program aiming at the fabrication of Ge and III-V 35 nm gate length MOS transistors for CMOS applications. His work focused on electrical and optical characterization as well as passivation of electrical defects at Ge and III-V/oxide interfaces. In 2011 he joined the imec photovoltaic program, where he is now working on the fabrication and characterization of thin film solar cells based on Cu(In,Ga)(S,Se)2 (CIGS), Cu2ZnSn(S,Se)4 (CZTS) and Cu2ZnGe(S,Se)4 (CZGS) absorbers.


Prof. Paul V. Braun is the Director of the Materials Research Laboratory, the Grainger Distinguished Chair in Engineering, and Professor of Materials Science and Engineering. He also has a co-appointment as a Professor in Chemistry and is affiliated with the Department of Mechanical Sciences and Engineering and the Beckman Institute for Advanced Science and Technology. Prof. Braun has co-authored a book, about 300 peer-reviewed publications, been awarded multiple patents, and has co-founded three companies. He is the recipient of the Illinois MatSE Young Alumnus Award (2011), the Friedrich Wilhelm Bessel Research Award of the Alexander von Humboldt Foundation (2010), the Stanley H. Pierce Faculty Award (2010), the 2002 Robert Lansing Hardy Award from TMS, a Beckman Young Investigator Award (2001), a 3M Nontenured Faculty Award (2001), the Xerox Award for Faculty Research (2004, 2009), and multiple teaching awards. He is a Fellow of the Materials Research Society and AAAS.
Professor William E. Buhro earned an A.B. in Chemistry in 1980 at Hope College (Holland, Michigan) and a Ph.D. in Chemistry in 1985 at the University of California, Los Angeles. His dissertation research focused on organometallic chemistry. He was then awarded the first Chester Davis Research Fellowship at Indiana University, where he was a postdoctoral fellow from 1985-1987. In 1987 he joined the Department of Chemistry at Washington University as an assistant professor. Buhro twice received the Washington University Council of Arts and Sciences Faculty Award for Teaching (1990, 1996), the Emerson Electric Co. Excellence in Teaching Award (1996), and was named a National Science Foundation Presidential Young Investigator (1991-1996). In 2010 Buhro received the St. Louis Award from the ACS St. Louis Section, and was named a Fellow of the American Chemical Society. He is currently the George E. Pake Professor in Arts & Sciences, Chair of the Department of Chemistry, and an editor of the ACS journal Chemistry of Materials. His research interests in nanoscience include the synthesis of nanocrystalline materials, especially pseudo-1D and 2D colloidal semiconductor nanocrystals, the spectroscopic properties of quantum nanostructures, and mechanisms of nanocrystal growth.
Raffaella Buonsanti obtained her PhD in Nanochemistry in 2010 at the National Nanotechnology Laboratory, University of Salento. Then, she moved to the US where she spent over five years at the Lawrence Berkeley National Laboratory, first as a postdoc and project scientist at the Molecular Foundry and after as a tenure-track staff scientist in the Joint Center for Artificial Photosynthesis. In October 2015 she started as a tenure-track Assistant Professor in the Institute of Chemical Sciences and Engineering at EPFL. She is passionate about materials chemistry, nanocrystals, understanding nucleation and growth mechanisms, energy, chemical transformations.
Julea Butt is Professor of Biophysical Chemistry at the University of East Anglia, Norwich, UK. She graduated from Oxford University in 1989 with a degree in Chemistry, pursued research for her PhD at the University of California, Irvine, USA and post-doctoral research at the National Institutes of Health, USA and Wageningen University, Netherlands. In 1997 she joined the University of East Anglia as a Wellcome Trust Career Development Fellow and was subsequently appointed as a lecturer (2001), reader (2004) and professor (2010). Throughout her career Julea has pursued multi-disciplinary studies for molecular level understanding of the functional properties of electron transfer proteins, both the fundamentals and the opportunities for solar conversion. She collaborates with research teams across the UK and internationally and in 2015 was awarded a Royal Society Senior Research Fellowship.


Born in the Netherlands,David Cahen studied chemistry & physics at the Hebrew Univ. of Jerusalem (HUJ), Materials Research and Phys. Chem. at Northwestern Univ, and biophysics of photosynthesis (postdoc) at HUJ and the Weizmann Institute of Science, WIS. After joining the WIS faculty he focused on alternative sustainable energy resources, in particular various types of solar cells. In parallel he researches hybrid molecular/non-molecular systems, focusing on understanding and controlling electronic transport across (bio)molecules. He is a fellow of the AVS and the MRS. He heads WIS' Alternative, sustainable energy research initiative.
Petra Cameron is an associate professor in Chemistry at the University of Bath.
Luis M. Campos is an Associate Professor in the Department of Chemistry at Columbia University. He was born on this planet, just like you. Luis grew up in Guadalajara, Mexico, and moved at the age of eleven to Los Angeles, California. He received a B.Sc. in Chemistry from CSU Dominguez Hills in 2001, and a Ph.D. from the Department of Chemistry & Biochemistry at UCLA in 2006 working under the supervision of M. A. Garcia-Garibay and K. N. Houk. At UCLA, he was awarded the NSF Predoctoral Fellowship, Paul & Daisy Soros Fellowship, and the Saul & Silvia Winstein Award for his graduate research in solid-state photochemistry. Switching to materials chemistry, he went to UCSB as a UC President's Postdoctoral Fellow to work under the supervision of C. J. Hawker at the Materials Research Laboratory. At Columbia, his group’s research interests lie in physical macromolecular chemistry. To date, he has co-authored over 100 articles and 13 patents; and he has received various awards, including the ACS Arthur C. Cope Scholar Award, ONR Young Investigator Award,NSF CAREER Award, 3M Non-Tenured Faculty Award, I-APS Young Faculty Award, the Journal of Physical Organic ChemistryAward for Early Excellence, and the Polymers Young Investigator Award. In addition to these research accolades, Luis has been recognized for his pedagogical contributions by the Cottrell Scholar Award, Columbia University Presidential Teaching Award, and the Camille Dreyfus Teacher-Scholar Award.
Mariano Campoy Quiles´s research is devoted to the understanding and development of solution processed semiconductors for energy and optoelectronic applications. He and his team have built substantial research efforts in two application areas, solar photovoltaic (light to electric) and thermoelectric (heat to electric) energy conversion based on organic and hybrid materials. He studied physics at the Univesity of Santiago de Compostela, obtained his PhD in experimental physics from Imperial College London, and since 2008 he leads his team at the Institute of Materials Science of Barcelona.


Dr. Lei R. Cao is Professor in the Nuclear Engineering Program at The Ohio State University (OSU) and the Director of OSU-Nuclear Reactor Lab. Dr. Cao received his BS in Experimental Nuclear Physics from Lanzhou University in 1994, MS degree in Nuclear and Particle Physics in 2002, and PhD degree in Nuclear and Radiation Engineering Program, the Department of Mechanical Engineering at University of Texas at Austin in 2007. Prior to joining OSU, Dr. Cao was a research associate at the Center for Neutron Research, U.S. National Institute of Standards and Technology (NIST) and also received a short-term training at the Positron Emission Tomography Laboratory at Harvard Medical School. At OSU, Dr. Cao founded the Nuclear Analysis and Radiation Sensor laboratory (NARS) in 2010.
Dr. Cao's major research interests focus on applied nuclear physics and radiation science, including nuclear instrumentation and radiation detection, sensor development, radiation effects, and nuclear methods (PGAA, NDP, neutron radiography/tomography) for advanced materials characterization. Dr. Cao has published 110+ peer-reviewed journal articles and conference proceedings. Dr. Cao serves as Associate Editor for IEEE Transactions on Nuclear Science.




Christopher Case is the Chief Technology Officer at Oxford PV, a spin-out of Oxford University (UK) that is commercialising perovskites for tandem solar cell applications. Most recently, he was the Chief Technology Officer for Linde Electronics, a gas and equipment supplier and the former Chief Scientific Officer of The BOC Group (UK). A long time chair of the International Technology Roadmap for Semiconductors, he spent 10 years at AT&T Bell Labs in Murray Hill, NJ (US). He was an assistant professor of engineering at Brown University and director of the Thin Film Institute. He was a Fulbright-Hays scholar at the Université de Bordeaux and holds a Ph.D. degree in materials science from Brown University where he studied thin film chalcopyrite photovoltaic materials.
Maytal Caspary Toroker received her BA degree in molecular biochemistry (2004) and a direct-track PhD degree in theoretical chemistry (2009) at the Technion. After a postdoctoral period at Princeton University funded by the Marie Curie International Outgoing Fellowship from the European Union FP7 (2010-2013) program, she joined the Department of Materials Science and Engineering as an Assistant Professor in 2013 and was promoted to Associate Professor in 2019. She received several awards for excellence, including L'Oréal-Unesco-Israel Award (2010), New England Fund (2009), Sara Lee Schupf Post-Doctoral Award (2008/9), and the Levi Eshcol Scholarship (2007-9).
Felix (Phil) Castellano earned a B.A. in Chemistry from Clark University in 1991 and a Ph.D. in Chemistry from Johns Hopkins University in 1996. Following an NIH Postdoctoral Fellowship at the University of Maryland, School of Medicine, he accepted a position as Assistant Professor at Bowling Green State University in 1998. He was promoted to Associate Professor in 2004, to Professor in 2006, and was appointed Director of the Center for Photochemical Sciences in 2011. In 2013, he moved his research program to North Carolina State University where he is currently the Goodnight Innovation Distinguished Chair. He was appointed as a Fellow of the Royal Society of Chemistry (FRSC) in 2015. His current research focuses on metal-organic chromophore photophysics and energy transfer, photochemical upconversion phenomena, solar fuels photocatalysis, energy transduction at semiconductor/molecular interfaces, photoredox catalysis, and excited state electron transfer processes.
Andres Castellanos-Gomez is a Tenured Scientist in the Spanish National Research Council. He explores novel 2D materials and studies their mechanical, electrical and optical properties with special interest on the application of these materials in nanomechanical and optoelectronic devices. He is author of more than 100 articles in international peer review journals and 6 book chapters. He was awarded an ERC Starting Grant in 2017 and has been selected as one of the Top Ten Spanish Talents of 2017 by the MIT Technology Reviews. He has been also recognized with the Young Researcher Award (experimental physics) of the Royal Physical Society of Spain (2016).
Kylie Catchpole is Professor in the Research School of Engineering at the Australian National University. She has over 100 scientific publications, with a focus on using new materials and nanotechnology to improve solar cells. She completed her PhD at ANU and was a postdoctoral fellow at the University of New South Wales and the FOM Institute for Atomic and Molecular Physics in Amsterdam before returning to ANU in 2008. In 2013 she was awarded a Future Fellowship from the Australian Research Council and in 2015 she was awarded the John Booker Medal for Engineering Science from the Australian Academy of Science.
Dr. Sudip Chakraborty is currently leading MATES (Materials Theory for Energy Scavenging) Group, embedded in Discipline of Physics, IIT Indore as Assistant Professor of Physics. His current group consists of 6 Ph.D. and 4 Project students. After his PhD in modelling quantum dots for efficient solar cell, he moved to Max Planck Institute, Düsseldorf in early 2011 as Max Planck Postdoctoral Fellow. In early 2013, he joined Uppsala University and worked there till February, 2019 as a Senior Researcher, while 4 Ph.D students got their degree under his co-supervision, before he joined IIT Indore. He primarily work on Materials Modelling for Hybrid Perovskite Solar Cells, next generation catalytic and battery materials. He has served as potential reviewer for European Research Council (ERC) Advanced Grant and National Science Funding (NSF), while he was the co-chair of three consecutive European Materials Society (EMRS) Fall Meeting between 2014 and 2016. He has been invited to be the Guest Editor for two International journals: Frontiers in Chemistry and Catalysts. Presently, he has 101 International publications, having total citations of 2200 and 27 h-index, with accumulated Impact factors of 585. For more information, have a look here: https://sudiphys.wixsite.com/ceslab-sudip/research-publications




Education
2011-2016 Doctor of Philosophy in National Taiwan University, Taipei, Taiwan
2008-2010 Mater of Science in National Taiwan University, Taipei, Taiwan
2004-2008 Bachelor of Science in National Cheng Kung University, Tainan, Taiwan
Professional Appointments
2018-now Assistant Professor, Department of Chemical Engineering, National Chung Cheng University.
2016-2018 Postdoctoral Fellow (with Professor Wen-Chang Chen), Department of Chemical Engineering, National Taiwan University.
2015-2016 Visiting student (with Professor Alex Jen), Department of Material Science Engineering, University of Washington.
Research Interests: Polymer physic and engineering, Perovskite, Composite material, Electrospinning, Soft optoelectronic.
Dr. Chen received Ph. D. from the Photonic Program in EPFL Switzerland at 2009 under the supervision of Prof. Michael Graetzel. His research topic was focused on solid-state dye sensitized solar cells. Then he moved to Monash University in Australia as a post-doctoral research fellow with Prof. Udo Bach. Dr. Chen joined the Dept. of Photonic in National Cheng Kung University (NCKU, Tainan, Taiwan) in 2010 and became associate Professor and full Professor in 2014 and 2017 respectively. He was the director of the research and education division in the Center for Micro/Nano Science and technology (CMNST) in NCKU between Aug. 2017~ Jan. 2019. Currently his research interests are in the area of various photovoltaic materials and devices including dye-sensitized solar cells (DSCs), hybrid organic-inorganic perovskite-based solar cells (HOIPs) and novel semiconductor compounds. Meanwhile, he also involved in developing synthetic and characterization methods for TCO material, thin film, and semiconductor materials.
Dr. Tao Chen is now a full professor at the Department of Materials Science & Engineering, University of Science & Technology of China (USTC). He obtained his PhD degree in 2010 from Nanyang Technological University (Singapore). During his PhD study, he received the “Chinese Government Award for Outstanding Self-financed Students Abroad”. In 2011, he moved to the Department of Physics of the Chinese University of Hong Kong working as a Research Assistant Professor. In 2015, he joined the Department of Materials Science & Engineering at USTC under a national innovation program. Dr. Chen has published 100 papers, some of them published in Nature Energy, Nature Communications, Energy and Environmental Science, Journal of the American Chemical Society and so on, he was also invited to contribute two book chapters, and to sit on the Editorial Board Member of Journal of Semiconductors (2016-).
Yi-Bing Cheng is a professor in the Department of Materials Science and Engineering at Monash University, Australia and an elected Fellow of the Australian Academy of Technological Sciences and Engineering. He specialises in inorganic materials and composites. His major research interest is in the area of solution processed solar cells. He worked in dye sensitised solar cells (DSSC) for many years and developed technologies for printing of flexible DSSC devices. His current research has been mainly focused on the development of materials and processing technologies for perovskite solar cells. He has published over 450 research papers and 20 patents. He currently also holds a Thousand Talent Professor position at Wuhan University of Technology, China and has set up a Printed Optoelectronics Laboratory in the university.
Jun Cheng received his PhD in Chemistry at the Queen’s University Belfast, UK in 2008, and the subject was simulating surface catalysis using density functional theory. He then moved to the University of Cambridge, first as a postdoc for two years developing ab initio molecular dynamics based method for calculation of redox potentials and acidity constants. In 2010-2013, he was awarded a junior research fellowship by Emmanuel College at Cambridge, which granted him freedom to pursue his interest in interfacial electrochemistry. He became a university lecturer at the University of Aberdeen, UK in 2013, and was soon rewarded the major national start-up program fund and took up a full professorship in Xiamen University, China. Over years, his research has shifted from computational surface science and heterogeneous catalysis, to method development in redox and acid-base chemistry, and to ab inito electrochemistry. His recent research interest is combining electronic structure, sampling and machine learning methods for studying chemical dynamics in catalysis and electrochemistry.
Majed Chergui is Professor of Physics and Chemistry at the Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland. He received his Bachelor’s degree in Physics and Mathematics from Chelsea College (University of London), then his Master’s degree and in 1981, his Ph.D. in Molecular Physics from the Université Paris-Sud (Orsay). Thereafter, he spent six years at the Free University of Berlin (Germany), before moving to become in 1993 full professor of Physics at the Université de Lausanne, then to the EPFL in 2003.
He is best known for developing new ultrafast spectroscopic techniques and methods, which he applied to some of the most important problems in molecular spectroscopy and dynamics. In particular, he pioneered ultrafast X-ray spectroscopy and demonstrated its power for observing chemical transformations in molecules, solutions and nanoparticles, with femtosecond temporal and sub-Ångstrom spatial resolution. This work opened a new field of research which has influenced many international groups, especially at X-ray Free electron laser centers. Parallel to these achievements, he developed new ultrafast spectroscopic tools in the deep-ultraviolet (deep-UV), and in particular, he pioneered 2-dimensional deep-UV spectroscopy, with which he addressed electron transfer in proteins and charge carrier dynamics in transition metal oxide nanoparticles and solids.
With these various tools, he solved several fundamental questions regarding photoinduced phenomena in coordination chemistry complexes, in protein dynamics and in semiconductors, such as metal oxides. Among some of the highlights of his work are the description of the spin dynamics in metal complexes, the identification of solvation changes around photoexcited solutes, the unravelling of electron transfer processes concurrent with FRET in biological systems.
Chergui is the founding editor-in-chief of “Structural Dynamics” (AIP Publishing). He was awarded the Kuwait Prize for Physics (2009), the Humboldt Research Award (2010), the 2015 Earle K. Plyler Prize for Molecular Spectroscopy & Dynamics of the American Physical Society and the 2015 Edward Stern Award of the International X-ray Absorption Society.






is currently a professor of Department of Electrical and Electronic Engineering, the University of Hong Kong (HKU). Dr. Choy has published over 175 internationally peer-reviewed journal papers, contributed to one book and five book chapters, as well as a number of US and China patents. Among his publications, 12 papers have been featured as cover-story articles such as Adv. Mater., Adv Energy Mater., and Chem Comm., and 14 articles have been highlighted in research new/scholarly articles. Details of publication can be found in http://scholar.google.com.hk/citations?user=GEJf9dAAAAAJ. He was the recipient of the Sir Edward Youde Memorial Fellowship, the Croucher Foundation Fellowship, and the Outstanding Achievement Award from National Research Council of Canada and HKU Research Output Prize. He received overseas visiting fellowships from HKU to take a sabbatical leave at George Malliaras’s Group, Cornell University in 2008, a visit to Prof. Yang Yang, UCLA in summers of 2009 and 2011, Prof. Karl Leo, Institut fuer Angewandte Photophysik (IAPP), Technische Universitaet Dresden, Germany in the summer of 2010, and Prof./Sir Richard Friend, Cavendish Lab, Cambridge University, UK.
Wallace Choy is a fellow of OSA and senior member of IEEE. He has been recognized as Top 1% of most-cited scientists in Thomson Reuter’s Essential Science Indicators (ESI) three years in a row 2014, 2015 and 2016. He has been recognized as prolific researcher on organic solar cells in the index (WFC in physical sciences) in Nature Index 2014 Hong Kong published by Nature. He has been serving a technical consultant of HK-Ulvac (a member of stock-listed Ulvac Corp) since 2005. He has served as editorial board member for Nature Publishing Group of Scientific Reports and IOP Journal of Physics D, senior editor of IEEE Photonics Journal, topical editor of OSA Journal of the Optical Society of America B (JOSA founded in 1917), and guest editor of OSA Journal of Photonic Research, and Journal of Optical Quantum Electronics. He has delivered over 60 invited talks and served as a committee member in internationally industrial and academic conferences organized by various organizations such as IEEE, OSA and Plastic Electronics Foundation.






Emiliano holds a W2 tenure-track professorship at the Physics Department in LMU Munich and is the academic lead of the Plasmonic Chemistry Group. He is also a visiting researcher at the Chemistry Department, University College London, UK, and at the Physics Department, Imperial College London, UK.
His research interests lie at the interface between chemistry and physics, and focus on the development of novel nanomaterials and techniques, specifically for applications in energy conversion.
Emiliano studied chemistry at the National University of La Plata in Argentina. He was one of the founders of Nanodetection, a start-up company based on plasmonic sensing. He was also a Marie-Skłodowska-Curie research fellow at Imperial College London. In 2018, he was awarded with the ERC Starting Grant from the European Commission for his project CATALIGHT.
He is currently a Principal Investigator (PI) of two German excellence research clusters, Nanoinitiative Munich (NIM) and e-conversion; member of the Munich-based Centre for NanoScience (CeNS) and the Bavarian program Solar Technologies go Hybrid (SolTech). Since March 2019, Emiliano is also a member of the Young Academy of Europe (YAE) and he is currently co-editing the first book in Plasmonic Catalysis (Wiley, Apr. 2021).
Education and Professional Positions 2012-Present: Assistant Professor University of Washington Department of Chemistry 2010-2012: NIH NRSA Postdoctoral Fellow Columbia University 2010: PhD Inorganic Chemistry Massachusetts Institute of Technology 2006: BS Chemistry California Institute of Technology Awards 2015: Sloan Research Fellowship 2015: 3M Non-Tenured Faculty Award 2015: Seattle Association for Women in Science Award for Early Career Achievement 2014: University of Washington Innovation Award 2010: Ruth L. Kirschstein National Research Service Award Postdoctoral Fellowship, National Institutes of Health 2010: Alan Davison Ph.D. Thesis Prize, Massachusetts Institute of Technology 2009: Young Investigator Award, Division of Inorganic Chemistry, American Chemical Society




Associate Professor, Chemistry Department, University of Colorado, Boulder
Adjunct Professor, National Renewable Energy Laboratory
Enrique Cánovas graduated on Applied Physics at Universidad Autónoma de Madrid (2002). After that, he realized a two-years Master of Advanced Studies at Universidad de Valladolid working on the spectroscopic characterization of native and operation-induced defects in high power laser diodes. From 2004 to 2006 he made a second Master of Advanced Studies at Universidad Politécnica de Madrid (Institute of Solar Energy, IES); training focus was on the fabrication, characterization and optimization of solid state solar cells. In 2006 he joined the group of Prof. Martí and Prof. Luque at IES, where he completed PhD studies on the spectroscopic characterization of novel nanostructures aiming ultra-high-efficiency solar cells. His PhD studies included two placements (covering 9 months in total) at Lawrence Berkeley National Laboratory (USA - with Prof. W. Walukiewicz) and Glasgow University (Scotland - with Prof. Colin Stanley). Between 2010 and 2012 he worked as a postdoc at FOM Institute AMOLF (Amsterdam - The Netherlands, Prof. M. Bonn) on the characterization of carrier dynamics in sensitized solar cell architectures. Between 2012 to 2018 he lead the Nanostructured Photovoltaics Group at Max Planck Institute for Polymer Research (Mainz, Germany). Since April 2018, Enrique Canovas works at IMDEA Nanoscience where he was appointed Assistant Research Proffesor (tenure-track). His research interests cover all aspects of photovoltaics, nanotechnology and charge carrier dynamics.




Songyuan Dai is the Professor and Dean of Renewable Energy School, North China Electric Power University. He received his BS in Department of Physics from Anhui Normal University in 1987. And got his MS, and PhD degrees in Institute of Plasma Physics Chinese Academy of Sciences, in 1991, and 2001, respectively. He works as a chief scientist of National Key Basic Research Project (973 project) during 2006-2010,2011-2015, and 2016~2020. He published over 200 peer-reviewed papers regarding dye-sensitized solar cells, quantum-dot solar cell and perovskite solar cell
Dibyendu Das is Assistant Professor in the Department of Chemical Sciences of Indian Institute of Science Education and Research (IISER) Kolkata, West Bengal, India. He received his MSc degree in Organic Chemistry at the University of Calcutta (India) (2005), PhD in Supramolecular Chemistry at Indian Association for the Cultivation of Science (Thesis 2010) and postdoctoral training at the Emory University. From Jan 2017, he is working in IISER Kolkata. His lab is actively working in the field of systems chemistry and driven self-assembly.
Awards and Distinctions
Advisory Board of Materials Horizons from 202
Early Career Advisory Board of ACS Chemical Reviews 2020-2021.
International Advisory Board (IAB) of AsianJOC from 2021 onwards.
Awarded Swarnajayanti Fellowship in Chemical Science 2020, DST, Govt of India.
Selected as an Associate of the Indian Academy of Sciences (IASc) 2019.
Awarded INSPIRE Faculty Fellowship 2012 from DST, Govt of India.
Filippo De Angelis is senior research scientist and a deputy director at the CNR Institute of Molecular Sciences and Technology, in Perugia, Italy. He is the founder and leader of the Computational Laboratory for Hybrid/Organic Photovoltaics. He earned a BS in Chemistry in 1996 and a PhD in Theoretical Inorganic Chemistry in 1999, both from the University of Perugia. He is an expert in the development and application of quantum mechanical methods to the study of hybrid/organic photovoltaics and materials for energy applications. He is Fellow of the European Academy of Sciences. He has published >270 papers with > 17000 citations.
Melepurath Deepa received her PhD in Applied Chemistry from Delhi University, India in 2004. Thereafter, she worked as a Scientist in the Electronic Materials Division at CSIR-National Physical Laboratory. In November 2009, she joined the Department of Chemistry at the Indian Institute of Technology Hyderabad, and she is currently an Associate Professor and the Head of the Department. Her present research is focused on designing and developing new photoanode and counter electrode architectures for quantum dot solar cells, conducting polymer composites for electrochromic devices and pseudocapacitors, and novel electrode materials for Li-based batteries. She has been a recipient of the CSIR Young Scientist Award in Chemical Sciences (2008), NASI - Young Scientist Platinum Jubilee Award in Chemical Sciences (2010), and the B. M. Birla Science Prize in Chemical Sciences (2013). She has published 125 research articles in peer reviewed SCI journals, contributed to 3 book chapters and filed 4 patents, and has an h-index of 35.


Hilmi Volkan Demir received his B.S. degree from Bilkent University, Ankara, Turkey, in 1998, and his M.S. and Ph.D. degrees from Stanford University, Stanford, CA, USA, in 2000 and 2004, respectively. As Singapore’s NRF Fellow, he is currently a Professor of electrical engineering, physics and materials with Nanyang Technological University (NTU), Singapore, where he is also the Director of LUMINOUS! Center of Excellence for Semiconductor Lighting and Displays. Concurrently, he holds appointment at Bilkent University and UNAM (his alma mater). His current research interests include nanocrystal optoelectronics, semiconductor nanophotonics and lighting. His scientific and entrepreneurship activities resulted in important international and national awards, including the NRF Investigatorship Award, the Nanyang Award for Research Excellence and the European Science Foundation EURYI Award. Dr. Demir is an elected Associate Member of the Turkish National Academy of Sciences (TUBA) and a Fellow of OSA.


Dr. Deutsch has been studying photoelectrochemical (PEC) water splitting since interning in Dr. John A. Turner’s lab at NREL in 1999 and 2000. He performed his graduate studies on III-V semiconductor water-splitting systems under the joint guidance of Dr. Turner and Prof. Carl A. Koval in the Chemistry Department at the University of Colorado Boulder.
Todd officially joined NREL as a postdoctoral scholar in Dr. Turner’s group in August 2006 and became a staff scientist two years later. He works on identifying and characterizing appropriate materials for generating hydrogen fuel from water using sunlight as the only energy input. Recently, his work has focused on inverted metamorphic multijunction III-V semiconductors and corrosion remediation strategies for high-efficiency water-splitting photoelectrodes. Todd has been honored as an Outstanding Mentor by the U.S. Department of Energy, Office of Science nine times in recognition of his work as an advisor to more than 30 students in the Science Undergraduate Laboratory Internship (SULI) program at NREL.


Dawei Di is a MIT Technology Review 'Innovator Under 35' (global, 2019) and 'Innovator Under 35, China' (2018). He has joined the College of Optical Science and Engineering, Zhejiang University as a Principal Investigator. He is currently a visiting researcher at the Cavendish Laboratory, University of Cambridge, UK. Dawei Di obtained a PhD (in Engineering) from the University of New South Wales, Australia and a second PhD (in Physics) from the University of Cambridge, UK. His doctoral supervisors include renowned scientists in optoelectronics and semiconductor physics, Professor Sir Richard H. Friend (FRS, FREng, FIEE, FInstP, Kt) (Cavendish Professor of Physics), and Scientia Professor Martin A. Green (FRS, AM, FIEEE, FAA, FTSE). Dawei Di’s research interests span from the exciton spin dynamics in organic light-emitting molecules, to the physics of record-breaking organic and perovskite optoelectronic devices (LEDs and solar cells). He published more than 40 papers in leading scientific journals including Science, Nature Photonics (cover article), Joule, Nature Communications, Advanced Materials, Nano Letters, ACS Energy Letters, Journal of Physical Chemistry Letters and Progress in Photovoltaics. These include 8 papers in Science/Nature/Cell family journals. He filed 4 international patents, wrote 1 book chapter, and translated 3 textbooks. His work has been featured in research news and highlights in high-profile journals such as Nature, Nature Materials and Nature Reviews Chemistry.


Eric Wei-Guang Diau received his Ph.D. in Physical Chemistry from National Tsing Hua University, Taiwan, in 1991. Before joining at Department of Applied Chemistry, National Chiao Tung University, Hsinchu, Taiwan, as a faculty member since 2001, he worked as a postdoctoral fellow at Emory University (1993-1995), University of Queensland (1995-1996), Stanford Research Institute, International (1996-1997) and California Institute of Technology (1997-2001). He is interested on studying relaxation kinetics in condensed matters, in particular interfacial electron transfer and energy transfer dynamics in many solar energy conversion systems. His current research is focusing on the developments of novel functional materials for next-generation solar cells, including perovskite solar cells (PSC). He received “Outstanding Research Award” from MRS Spring Meeting & Exhibit on April, 2014 and “Sun Yat Sen Academic Award” from Sun Yat Sen Academic and Cultural Foundation on October, 2014. He has published over 180 peer-reviewed papers with H-index 51. He has been granted over 14 patents. He is currently Distinguished Professor at Department of Applied Chemistry and Science of Molecular Science, National Chiao Tung University.
Marjolein Dijkstra is full professor (2007) in the Debye Institute for Nanomaterials Science at Utrecht University. She received a MSc degree in Molecular Sciences at Wageningen University as well as in Physics at Utrecht University. She obtained her PhD degree from Utrecht University in 1994, and was awarded twice a prestigious EU Marie-Curie Individual Fellowship to join the Physical and Theoretical Chemistry group at Oxford University and the H.H. Wills Physics Laboratory at Bristol University.
In 1999, she started her own research line at Utrecht University on obtaining a fundamental understanding on how colloidal building blocks self-assemble and how the self-assembly process can be manipulated by external fields such as gravity, templates, air-liquid or liquid-liquid interfaces, and electric fields. Her group employs Monte Carlo, (event driven) Molecular and Brownian Dynamics simulations, Stochastic Rotational Dynamics simulations to include hydrodynamics, Umbrella and Forward flux sampling, free-energy calculations based on thermodynamic integration methods, and simulated annealing techniques, and more recently machine learning techniques, to determine the (non)-equilibrium phase behavior of colloids, nanoparticles, and liquid crystals.
She is recipient of the Minerva Prize (2000), a high-potential grant (2004), a prestigious NWO VICI and Aspasia grant (2006), and an ERC advanced grant (2020), and is elected as a member of the Royal Netherlands Academy of Arts and Sciences (KNAW). She is (vice) director of the Debye Institute for Nanomaterials Science, (consulting) editor of Reviews of Modern Physics, Physical Review X, and Molecular Physics, and has organised several international conferences and workshops.






Name: Kazunari DOMEN Affiliation: The University of Tokyo Adjunct affiliation: Department of Chemical System Engineering, School of Engineering, Education: 1976 B.E. The University of Tokyo 1979 M.E. The University of Tokyo, School of Science 1982 Ph.D. The University of Tokyo, School of Science Professional experience: 1982-1990 Associate Researchers at Tokyo Institute of Technology 1990-1996 Associate Professor at Tokyo Institute of Technology 1996-2004 Professor at Tokyo Institute of Technology 2004-present Professor, The University of Tokyo, Japan (Visiting Scientist at IBM Almaden Research Center from 1985 to 1986.) Academic interests: Development of Photocatalysts for Water Splitting Study on Heterogeneous Catalysis Reactions by Infrared Spectroscopy Surface Reaction Dynamics by Nonlinear Laser Spectroscopy Development of New Functional Materials for Catalysis Academic/social contribution: 1. Editorial Board, Journal of Catalysis 2. Associate Editor, Catalysis Today 3. Director, The Chemical Society of Japan 4. Director, Catalysis Society of Japan 5. Member, The Engineering Academy of Japan
Claudia Draxl is Einstein Professor at the Humbold-Universität zu Berlin, Germany. She received her PhD at the University of Graz, was awarded a honorary doctorate of Uppsala University, Sweden (2000), and was full professor at the Montanuniversität Leoben (2006-2011). Her research interests cover theorectical concepts and methodology, the development of computer codes, and their application to answer questions related to a variety of materials and their properties. A particular focus of the group concerns the quantum-based description of radiation-matter interaction based on many-body perturbation theory and time-dependent DFT, covering various types of excitations, like photoemission, optical and X-ray absorption, electron-loss spectroscopy, and Raman scattering. A recent research focus is on data-driven science, within the NOMAD (Novel Materials Discovery) Centre of Excellence.
Dr. Mao-Hua Du is a Senior R&D Staff in the Materials Sciences and Technology Division at Oak Ridge National Laboratory. He received his B.S. in Physics at Fudan University, China, in 1998 and Ph. D in Physics at the University of Florida in 2003. He was a postdoctoral associate at National Renewable Energy Laboratory (Golden, Colorado, 2004-2006) and a National Research Council Research Associate at Naval Research Laboratory (Washington, DC, 2006-2007). He joined Oak Ridge National Laboratory in 2007. His research focuses on electronic structure, optical properties, and defect physics in electronic and optical materials (with applications in photovoltaics, energy efficient lighting, radiation detection, etc.).


James Durrant is Professor of Photochemistry in the Department of Chemistry, Imperial College London and Ser Cymru Solar Professor, University of Swansea. His research addresses the photochemistry of new materials for solar energy conversion targeting both solar cells (photovoltaics) and solar to fuel (i.e.: artificial photosynthesis. It is based around employing transient optical and optoelectronic techniques to address materials function, and thereby elucidate design principles which enable technological development. His group is currently addressing the development and functional characterisation of organic solar cells and photoelectrodes for solar fuel generation. More widely, he leads the UK�s Solar Fuels Network and the Welsh government funded S�r Cymru Solar initiative. He has published over 300 research papers and 5 patents, and was recently awarded the 2012 Tilden Prize by the RSC.
Professor Vladimir Dyakonov holds the Chair of Experimental Physics (Energy research) on the Faculty of Physics and Astronomy of Julius-Maximilian University of Würzburg, Germany since 2004 and he is the Scientific Director of the Bavarian Centre of Applied Energy Research (ZAE Bayern) since 2005. He studied physics at the University of St. Petersburg and received his doctorate at the A. F. Ioffe Physico-Technical Institute in 1996. Since 1990, he has been a visiting researcher at the universities of Bayreuth (Germany), Antwerp (Belgium) and Linz (Austria). He finished his habilitation in experimental physics at the University of Oldenburg (Germany) in 2001. In 2007-2009 he was the Vice-dean of the Faculty of Physics and Astronomy, in 2010-2011 the managing director of Institute of Physics and in 2013-2015 he was the Dean of the Faculty of Physics and Astronomy at the University of Würzburg. Dyakonov’s main research interests are in the fields of thin-film photovoltaics, semiconductor spectroscopy and functional energy materials, in general.






- PhD in Physics, University of Basel, Switzerland - Post-Doctoral Research Assistant, BASF AG, Ludwigshafen, Germany: Molecular Science - Maitre d’Enseignement et de Recherche, Univ. Geneva, Switzerland - Biological Molecules - Team-leader, Institute of Quantum Electronics, ETH Zurich, Switzerland - Habilitation & vein legendi in Physics, University of Basel, Switzerland, 1998 - Since 1998: Full Professor in Photophysics / Nano-Optics / Nano-Physics at TU Dresden, School of Science Profile: Nanoscale research of quantum nanostructures: magnetic, optical. electronic, molecular; application to magnetic textures, charged domain walls, near-field metamaterials, etc.
Vida Engmann obtained her Dr. rer. nat in 2014 from the Ilmenau University of Technology under the supervision of Prof. Dr. Gerhard Gobsch. In 2014 she joined the OPV group at Mads Clausen Institute of University of Southern Denmark as a postdoctoral researcher. In 2017 she was appointed assistant professor, with the focus on degradation and additive-assisted stabilization of organic solar cells. Her international research stays include Uppsala University, University of Colorado Boulder / NREL, and Russian Academy of Sciences Chernogolovka. She authored numerous publications in high-impact journals such as Nature Energy, Energy & Environmental Science, Advanced Energy Materials, ACS Applied Materials & Interfaces, and one chapter in a scientific book, as well as edited the World Scientific Reference of Hybrid Materials - Vol. 2. For her research, she has been awarded the postdoctoral fellowship by the Independent Research Fund Denmark, EU COST action MP1307, I-CAM fellowship, as well as the Thuringian State Graduate stipend, and she is currently co-PI on a Villum Foundation research project on mechanical stabilization of organic solar cells. In 2019 she received the UNESCO-L'Oréal For Women in Science award.
Lioz Etgar obtained his Ph.D. (2009) at the Technion–Israel Institute of Technology and completed post-doctoral research with Prof. Michael Grätzel at EPFL, Switzerland. In his post-doctoral research, he received a Marie Curie Fellowship and won the Wolf Prize for young scientists. Since 2012, he has been a senior lecturer in the Institute of Chemistry at the Hebrew University. On 2017 he received an Associate Professor position. Prof. Etgar was the first to demonstrate the possibility to work with the perovskite as light harvester and hole conductor in the solar cell which result in one of the pioneer publication in this field. Recently Prof. Etgar won the prestigious Krill prize by the Wolf foundation. Etgar’s research group focuses on the development of innovative solar cells. Prof. Etgar is researching new excitonic solar cells structures/architectures while designing and controlling the inorganic light harvester structure and properties to improve the photovoltaic parameters.
Jacky Even was born in Rennes, France, in 1964. He received the Ph.D. degree from the University of Paris VI, Paris, France, in 1992. He was a Research and Teaching Assistant with the University of Rennes I, Rennes, from 1992 to 1999. He has been a Full Professor of optoelectronics with the Institut National des Sciences Appliquées, Rennes,since 1999. He was the head of the Materials and Nanotechnology from 2006 to 2009, and Director of Education of Insa Rennes from 2010 to 2012. He created the FOTON Laboratory Simulation Group in 1999. His main field of activity is the theoretical study of the electronic, optical, and nonlinear properties of semiconductor QW and QD structures, hybrid perovskite materials, and the simulation of optoelectronic and photovoltaic devices. He is a senior member of Institut Universitaire de France (IUF).


Francisco Fabregat-Santiago is Associate Professor at Physics department of Universitat Jaume I de Castelló. He obtained his BSc (1995) in Physics at Universitat de Valencia and Univerity of Leeds and received his PhD (2001) at the Universitat Jaume I where he is an active member of the Photovoltaics and Optoelectronic devices group that is focused on the development of materials and devices for the production and storage of energy from renewable sources. He is an expert in electro-optical characterization of devices and particularly known by his works in the use of the impedance spectroscopy to model, analyze and interpret the electrical characteristics (charge accumulation, transfer reactions and transport) of devices and films including ZnO and TiO2 nanostructured films (nanocolloids, nanorods and nanotubes), dye sensitized solar cells, electrochromic materials and liquid and solid state hole conductors. He is also active in the fields of QD and perovskite solar cells, photoinduced water splitting, bio-energy and bio-sensors. He has published 103 papers that accumulate more than 9500 citations with an index h of 46, and acts as referee for numerous scientific journals.
Antonio Facchetti obtained his Laurea degree in Chemistry cum laude and a Ph.D in Chemical Sciences from the University of Milan. In 2002 he joined Northwestern University where he is currently an Adjunct Professor of Chemistry. He is a co-founder and currently the Chief Technology Officer of Flexterra Corporation. Dr. Facchetti has published more than 450 research articles, 12 book chapters, and holds more than 120 patents (H-index 93). He received the 2009 Italian Chemical Society Research Prize, the team IDTechEx Printed Electronics Europe 2010 Award, the corporate 2011 Flextech Award. In 2010 was elected a Kavli Fellow, in 2012 a Fellow of the American Association for the Advanced of Science (AAAS), in 2013 Fellow of the Materials Research Society, in 2015 he became a Fellow of the Royal Society of Chemistry, and in 2016 a Fellow of the ACS Polymeric Materials Science and Engineering. In 2010 he was selected among the "TOP 100 MATERIALS SCIENTISTS OF THE PAST DECADE (2000-2010)" by Thomson Reuters and in 2015/2016/2017/2018 recognized as a Highly Cited Scientist. In 2016 he has been elected a Fellow of the National Academy of Inventors and was awarded the 2016 ACS Award for Creative Invention. In 2017 he was awarded the Giulio Natta Gold Medal from the Italian Chemical Society for his work on polymeric materials.




Sascha is an EPSRC Doctoral Prize Fellow at the University of Cambridge.
His research aims to tailor the optoelectronic properties of novel materials through chemical modifications. He investigates how material changes like doping, dimensionality and chirality impact the electronic structure, and thus enable more efficient devices or entirely new functionalities.
Before, he completed his PhD in Physics with Dr Felix Deschler and Prof Sir Richard Friend at the Cavendish Laboratory, where he investigated charge carrier dynamics in halide perovskite semiconductors for optoelectronic applications such as solar cells or lighting. He found that charge accumulation and localisation effects can be beneficial for device performance.


Since Aug. 2014:
Professor for “Inorganic Functional Materials” and head of the NANOMATERIAL group at the IAAC of the Ludwigs-Universität-Freiburg
2009 – 2014:
Group Leader within the framework of UniCat (DFG Exzellenz Cluster), Technische Universität Berlin, Institut für Chemie
Research on "Nanostructured electrodes for (bio)-electrocatalysis“
2008 – 2009:
Post-Doc at the MPIKG, Department of Biomaterials, Golm, Germany
2005 – 2008:
Dissertation at the Max-Planck-Institute of Colloids and Interfaces (MPIKG), Golm, Germany
“Synthesis of nanostructured metal nitrides through reactive hard-templating“
2000 – 2005:
Education in chemistry, Paris, France


He obtained a Ph.D. (cum laude) in Nanoscience and Nanotechnology, University of Valencia (Spain), 2017. He has over 6 years of experience in third generation photovoltaics, obtained at internationally recognized institutions. He joined Saule Technologies in 2017, and since July 2018 he is the Director Of Knowledge Management. He is leading a team involved in a broad range of activities such as; Business Development, Marketing, IP and Project Management and currently has a particular focus on product development for IoT applications.


Dr Marina Freitag is presently a Royal Society University Research Fellow and Newcastle Academic Track Fellow at School of Natural and Environmental Sciences, Newcastle University, UK. She is continuing her work in coordination chemistry, energy relevant materials and solar cells. Previously, she held as an Assistant Professor at the Department of Chemistry, Uppsala University and a postdoctoral position at EPFL (Prof. Anders Hagfeldt's). She received her PhD degree with Prof. Galoppini from Rutgers University, USA, and her BSc, in Chemistry from Freie Universität Berlin, Germany.
Marina is the inventor of the so-called Zombie-cell and she contributed to recent breakthroughs in dye-sensitized solar cells and their low-light applications. She is a recipient of the Göran Gustafsson's Grand Prize for Young Researchers 2019.
My research interests focus on bridging redox proteins with novel electrode materials for application in biosensing, biophotophotovoltaics and biofuels. I use the tools of electrochemistry and spectroscopy to discern mechanistic and kinetic infromation for developing improved biocatalytic systems. I thrive off interdisciplinary research, combing my own diverse background in material science, biology and electrochemistry with leading experts in molecular biology, redox polymer chemistry, and biophysical spectroscopy in an attempt to solve a complex problem: exploiting nature to produce renewable energy. My greatest passion lies not only in developing novel high performance biocatalytic system, but applying a rigourous systematic approach to discern fundamental mechanisms that underpin macroscopic performance.
Current Position (Feb 2019): Postdoctoral Researcher at the Vrije Universiteit Amsterdam
Awardee of the NWO-Applied Sciences and Engineering - VENI grant Project # 16866
Richard Friend holds the Cavendish Professorship of Physics at the University of Cambridge. His research encompasses the physics, materials science and engineering of semiconductor devices made with carbon-based semiconductors, particularly polymers. His research advances have shown that carbon-based semiconductors have significant applications in LEDs, solar cells, lasers, and electronics. His current research interests are directed to novel schemes – including ideas inspired by recent insights into Nature’s light harvesting – that seek to improve the performance and cost of solar cells.




Benjamin Grévin is a graduate of the Institut National Polytechnique de Grenoble (INPG) and of the former University Joseph Fourier Grenoble I (University Grenoble Alpes, UGA). He received the Ph.D. degree in 1998 under the supervision of Dr. Y. Berthier. His doctoral work dealt with NMR investigations of high Tc superconductors and related cuprates. After a postdoctoral stay at the Condensed Matter Research Department of Geneva University in the group of Prof. Ø. Fisher, he joined in 2000 the UMR5819 joint research center (CEA-CNRS-UGA). He was awarded the bronze medal of CNRS in 2005 and obtained the accreditation to direct research (Habilitation à diriger les recherches, HdR) in 2006. His current research projects as CNRS Research Director deal with the development of advanced scanning probe microscopy techniques (nc-AFM/KPFM, time-resolved surface photo-voltage imaging), for local investigations of the opto-electronic properties of model organic (donor-acceptor BHJ and molecular self-assemblies), hybrid perovskites and 2D TMDC materials.


Dr. Galian received her Ph.D in Chemistry at the National University of Cordoba, Argentina in 2001. Then, she was a postdoc researcher at the Polythecnic University of Valencia, University of Valencia and University of Ottawa. During those years, she has studied photosensibilization processes by aromatic ketones using laser flash photolysis techniques and was involved in photonic crystal fiber/semiconductor nanocrystal interaction projects. In 2007, Dr. Galian came back to Spain with a Ramon y Cajal contract to study the surface chemistry of quantum dots and since 2017 she has a permanent position at the University of Valencia. Her main interest is the design, synthesis and characterization of photoactive nanoparticles and multifunctional nanosystems for sensing and electroluminescent applications.
Elena Galoppini was born in Pisa, Italy. She received a Laurea in Chimica from the Università di Pisa, and a Ph.D. from the University of Chicago (synthesis and reactivity of ethynylcubanes, strained cage molecules). She was then a Postdoctoral Fellow at the University of Texas at Austin, where she synthesized and studied the effect of the helix dipole on electron transfer processes in donor-spacer-acceptor systems made from peptides. She joined as Assistant Professor the Chemistry Department at Rutgers University-Newark, where she is Distingushed Professor since 2017. She a the recipent of the 2019 Rutgers Board of Trustees Award for Excellence in Research and has authored over 100 papers and review articles. The research interests of her group are centered on the design and synthesis of model chromophoric compounds to study electronic processes on nanostructured semiconductor materials. This research finds application in the development of functional nanomaterials, including new types of solar cells, electrochromic windows and biosensors.
Daniel R. Gamelin received his B.A. in chemistry from Reed College, spent a year as a visiting scientist at the Max-Planck-Institut für Strahlenchemie, and earned his Ph.D. in chemistry from Stanford University working with Edward I. Solomon in the fields of inorganic and bioinorganic spectroscopies. Following a postdoctoral appointment working with Hans U. Güdel (University of Bern) studying luminescent inorganic materials, he joined the chemistry faculty at the University of Washington, Seattle (2000), where he presently holds the Harry and Catherine Jaynne Boand Endowed Professorship in Chemistry. His research involves the development of new inorganic materials with unusual electronic structures that give rise to desirable photophysical, photochemical, magnetic, or magneto-optical properties. He is presently an Associate Editor for the Royal Society of Chemistry journal Chemical Communications.


Dr. Mahesh Gangishetty is currently a postdoctoral fellow at Rowland Institute at Harvard University. He earned his Ph.D. in Chemistry from the University of Saskatchewan, Canada and M.Sc. in Chemistry from the Indian Institute of Technology in Roorkee. His research is focused on employing variety of optoelectronic materials for energy conversion applications.
Germà Garcia-Belmonte (1964) received his Ph.D. degree at UNED, 1996. He worked (1988-1992) at CIEMAT, Madrid, on experimental and theoretical research in the area of digital processing of nuclear signal. He joined the Universitat Jaume I, Castelló, in 1992 and currently works as a Full Professor of Applied Physics (2010) at the Institute of Advanced Materials. He published 198 papers in research journals, and has 12.000 citations and h-index 54 (WOS). He is recognized as 2018 Highly Cited Research (Clarivate Analytics) in the cross-field category. He studied intercalation processes in oxides and polymer films by impedance methods. He follows researches in various areas within the field of Organic Electronics and photovoltaics as electronic mechanisms in organic light-emitting diodes, organic photovoltaics, and plastic and thin-film solar cells. He is currently conducting researches in the topic of perovskite-based solar cells. Also of interest is the electrochemical kinetics of electrodes for batteries. Device physics using impedance spectroscopy (including modeling and measuring) is his main subject.


Sixto Giménez (M. Sc. Physics 1996, Ph. D. Physics 2002) is Associate Professor at Universitat Jaume I de Castelló (Spain). His professional career has been focused on the study of micro and nanostructured materials for different applications spanning from structural components to optoelectronic devices. During his PhD thesis at the University of Navarra, he studied the relationship between processing of metallic and ceramic powders, their sintering behavior and mechanical properties. He took a Post-Doc position at the Katholiek Universiteit Leuven where he focused on the development of non-destructive and in-situ characterization techniques of the sintering behavior of metallic porous materials. In January 2008, he joined the Group of Photovoltaic and Optoelectronic Devices of University Jaume I where he is involved in the development of new concepts for photovoltaic and photoelectrochemical devices based on nanoscaled materials, particularly studying the optoelectronic and electrochemical responses of the devices by electrical impedance spectroscopy. He has co-authored more than 80 scientific papers in international journals and has received more than 5000 citations. His current h-index is 31.




Feliciano Giustino is Full Professor or Materials at the University of Oxford. He holds an M.Sc. in Nuclear Engineering from Politecnico di Torino and a Ph.D. in Physics from the Ecole Polytechnique F\'ed\'erale de Lausanne. Before joining the Department of Materials at Oxford he was a postdoc at the Physics Department
of the University of California at Berkeley. He specialises in electronic structure theory and the atomic-scale design of advanced functional materials for solar energy harvesting. He is author of ~100 research papers and one book on Materials Modelling using Density Functional Theory. He is Associate Editor of Computational Materials Science, and the recipient of a Leverhulme Research Leadership Award. In 2017 he was elected the 2017/18 the Mary Shepard B. Upson Visiting Professor in Engineering within the Department of Materials Science and Engineering at Cornell University.



Professor of Physical Chemistry at the Ecole Polytechnique Fédérale de Lausanne (EPFL) Michael Graetzel, PhD, directs there the Laboratory of Photonics and Interfaces. He pioneered research on energy and electron transfer reactions in mesoscopic systems and their use to generate electricity and fuels from sunlight. He invented mesoscopic injection solar cells, one key embodiment of which is the dye-sensitized solar cell (DSC). DSCs are meanwhile commercially produced at the multi-MW-scale and created a number of new applications in particular as lightweight power supplies for portable electronic devices and in photovoltaic glazings. They engendered the field of perovskite solar cells (PSCs) that turned our to be the most exciting break-through in the recent history of photovoltaics. He received a number of prestigious awards, of which the most recent ones include the RusNANO Prize, the Zewail Prize in Molecular Science, the Global Energy Prize, the Millennium Technology Grand Prize, the Samson Prime Minister’s Prize for Innovation in Alternative Fuels, the Marcel Benoist Prize, the King Faisal International Science Prize, the Einstein World Award of Science and the Balzan Prize. He is a Fellow of several learned societies and holds eleven honorary doctor’s degrees from European and Asian Universities. According to the ISI-Web of Science, his over 1500 publications have received some 230’000 citations with an h-factor of 219 demonstrating the strong impact of his scientific work.
Giulia is Associate Professor at Physical Chemistry Unit at University of Pavia, leading the PVsquared2 team, and running the European Grant ERCStG Project “HYNANO”aiming at the development of advanced hybrid perovskites materials and innovative functional interfaces for efficient, cheap and stable photovoltaics. Within this field, Giulia contributed to reveal the fundamental lightinduced dynamical processes underlying the operation of such advanced optoelectronic devices whose understanding is paramount for a smart device development and for contributing to the transition of a green economy.
Giulia received an MS in Physical Engineering in 2008 and obtained her PhD in Physics cum laude in 2012 at the Politecnico of Milan. Her experimental thesis focused on the realisation of a new femtosecond-microscope for mapping the ultrafast phenomena at organic interfaces. During her PhD, she worked for one year at the Physics Department of Oxford University where she pioneered new concepts within polymer/oxide solar cell technology. From 2012-2015, she was a post-doctoral researcher at the Italian Institute of Technology in Milan. In 2015, she joined the Ecole Polytechnique Fédérale de Lausanne (EPFL) with a Co-Funded Marie Skłodowska-Curie Fellowship. From 2016 to 2019, she has been awarded by the Swiss Ambizione Energy Grant providing a platform to lead her independent research group at EPFL focused on the developemnt of new generation hybrid perovskite solar cells.
She is author of 90 peer-reviewed scientific papers bringing her h-index to 44 (>13’000 citations), focused on developement and understanding of the interface physics which governs the operation of new generation solar cells.
Recently, she received the USERN prize in Physical Science, the Swiss Physical Society Award in 2018 for Young Researcher and the IUPAP Young Scientist Prize in Optics. She is currently USERN Ambassador for Italy and board member of the Young Academy of Europe.
More can be found at https://pvsquared2.unipv.it.
Weblink: https://people.epfl.ch/giulia.grancini?lang=en




Martha Grover is a Professor in the School of Chemical & Biomolecular Engineering at Georgia Tech, and Associate Chair for Graduate Studies. She earned her BS in Mechanical Engineering from the University of Illinois, Urbana-Champaign, and her MS and PhD in Mechanical Engineering from Caltech. She joined Georgia Tech as an Assistant Professor in 2003. In 2011 she received the Outstanding Young Researcher Award from the Computing and Systems Technology Division of AIChE. Her research program is dedicated to understanding, modeling, and engineering the self-assembly of atoms and small molecules to create larger scale structures and complex functionality. Her approach draws on process systems engineering, combining modeling and experiments in applications dominated by kinetics, including surface deposition, crystal growth, polymer reaction engineering, and colloidal assembly. She is a member of the NSF/NASA Center for Chemical Evolution, and Georgia Tech’s Decision and Control Laboratory.


Professor Gu's research focuses on designing novel solid-state and hybrid electrocatalysts for fuel generation, along with investigating and tailoring charge transfer mechanisms at the semiconductor-catalyst interface for solar energy conversion reactions, such as CO2 reduction, water oxidation, and water reduction.
Antonio Guerrero is a materials science chemist currently contracted as a Ramón y Cajal Fellow at the Institute of Advanced Materials (Jaume I University, Spain). Antonio completed a Ph.D. in Organometallic Chemistry (University of East Anglia, UK) industrially funded by Bayer CA focused on the design of new catalysts for the production of butyl rubber. Subsequently, Antonio worked during 4 years at the company Cambridge Display Technology where he developed some of the state of the art semiconducting materials for Organic Light Emitting Diodes (OLEDs). In 2010 Antonio Guerrero joined the group of Prof. Juan Bisquert at the University Jaume I where he learnt the insights of impedance spectroscopy to understand the operation mechanism of several electronic devices. Over the last few years, his work has been focused in three different lines of research: 1-Perovskite Materials for photovoltaic applications, 2-Organic Photovoltaics and 3- Photoelectrochemical Cells.
Prof. Guerrero-Pérez (ORCID 0000-0002-3786-5839) is full professor of chemical engineering, being her expertise focused in the design of catalytic processes and catalytic materials, specially for waste reutilization and for environmental protection. She has participated in several international and national research projects, and as a result, she has published more than 80 research articles in the most important journals of chemical engineering, materials science, and environmental. From 2014 to 2018 she coordinated an Erasmus Mundus project between 11 universities from Europe and Asia, in which more than 50 students and researchers participated in an exchange program in Materials Science and Catalysis.
Dr. Guichuan Xing received his bachelor Degree from Fudan University (China) in 2003 and PhD in physics from National University of Singapore (Singapore) in 2011. From 2009 to 2016, he worked as a research fellow in Prof. Tze Chien Sum group at Nanyang Technological University. Dr. Xing joined the Institute of Applied Physics and Materials Engineering (IAPME), University of Macau in 2016 as an assistant Professor. His research interest includes developing and applying ultrafast nonlinear spectroscopic techniques to probing, understanding and controlling the fundamental charge and energy carrier generation, transport and relaxation processes in novel optoelectronic systems for energy conversion/storage and light emission applications.


Dirk M. Guldi completed both his undergraduate studies (1988) and PhD (1990) at the University of Cologne (Germany). Following postdoctoral appointments at the National Institute of Standards and Technology (USA), the Hahn-Meitner Institute Berlin (1992), and Syracuse University, he joined the faculty of the Notre Dame Radiation Laboratory in 1995. He was promoted a year later from assistant to associate professional specialist, and remained affiliated to Notre Dame until 2004. Since 2004, he is Full Professor in the Department of Chemistry and Pharmacy at the Friedrich-Alexander University in Erlangen. Since 2018, Dirk M. Guldi is Co-Editor in Chief of Nanoscale and Nanoscale Horizons and he has been named among the world’s Highly Cited Researchers by Thomson Reuters.
The Guldi group and its network belong to the cutting edge of worldwide research in solar-energy conversion with expertise not only in advanced photon- and charge-management, but also in the synthesis of tailored materials and molecular modeling. Impressive documentations of their accomplishments are more than 700 peer-reviewed publications, nearly 40,000 citations, and an h-index of 100. At the heart is always a multifaceted and interdisciplinary research program, where his group designs, conceptually devises, synthesizes, tests, and characterizes novel nanometer scale materials with the objective of using them in solar energy conversion schemes. A broad range of spectroscopic (i.e. time-resolved and steady-state measurements with spectrophotometric detection covering a time range from femtoseconds to minutes) and microscopic techniques (i.e. scanning probe microscopy, electron microscopy) are routinely employed to address aspects that correspond to the optimization and fine-tuning of dynamics and/or efficiencies of charge separation, charge transport, charge shift, and charge recombination processes.
Philippe Guyot-Sionnest is a professor of Physics and Chemistry at the University of Chicago since 1991. His group developed original aspects of colloidal quantum dots and nanoparticles, including single dot PL microscopy, the luminescent core/shell CdSe/Zns, intraband spectroscopy, charge transfer doping, electrochemical and conductivity studies, the "solid state ligand exchange", and mid-infrared quantum dots. Prior work includes the development of surface infrared-visible sum-frequency generation and the early applications to interfacial and time resolved vibrational spectroscopy of adsorbates.

Anders Hagfeldt is Professor in Physical Chemistry at EPFL, Switzerland. He obtained his Ph.D. at Uppsala University in 1993 and was a post-doc with Prof. Michael Grätzel (1993-1994) at EPFL, Switzerland. His research focuses on the field of mesoporous dye-sensitized solar cells, specifically physical chemical characterization of mesoporous electrodes for different types of optoelectronic devices. He has published more than 370 scientific papers that have received over 35,000 citations (with an h-index of 90). He was ranked number 46 on a list of the top 100 material scientists of the past decade by Times Higher Education. In 2014, 2015 and 2016 he was on the list of Thomson Reuter’s Highly Cited Researchers. He is a member of the Royal Swedish Academy of Sciences, Stockholm, Royal Society of Sciences in Uppsala, and the Royal Swedish Academy of Engineering Sciences in Stockholm. He is a visiting professor at Uppsala University, Sweden and Nanyang Technological University, Singapore.
Anders Hagfeldt is President (Vice Chancellor) of Uppsala University, Sweden, and Professor in Physical Chemistry. He obtained his Ph.D. at Uppsala University in 1993 and was a post-doc with Prof. Michael Grätzel (1993-1994) at EPFL, Switzerland.
His research focuses on the fields of dye-sensitized solar cells (DSSC), perovskite solar cells (PSC) and solar fuels. His research includes physical chemical approaches for fundamental understanding of electronic properties and dynamics of materials, interfaces and devices, materials science and device development, and development of up-scalable manufacturing methods. He is co-founder and board member of the company Dyenamo AB.
He has published more than 560 scientific papers that have received over 96,000 citations with an h-index of 144 (Google Scholar). He was ranked number 46 on a list of the top 100 material scientists of the past decade by Times Higher Education. In 2014-2020 he was on the list of Thomson Reuter’s Highly Cited Researchers. He is a member of the European Academy of Sciences, Royal Swedish Academy of Sciences, Stockholm, Royal Society of Sciences in Uppsala, and the Royal Swedish Academy of Engineering Sciences in Stockholm. He is Doctor Honoris Causa at Université Paris Diderot, France, and Professeur Honoraire at EPFL, Switzerland.
Assistant Professor 2008-present Michigan State University Postdoctoral Fellow 2006-2008 Northwestern University Ph.D., Chemistry 2006 California Institute of Technology Research Interests: Inorganic chemistry, renewable energy technology, investigations of homogeneous and heterogeneous electron-transfer reactions, synthesis of novel nanostructured materials, development and investigations of photovoltaic and photoelectrochemical cells
Dr. Liyuan Han is the managing researcher of Center for Green Research on Energy and Environmental Materials, National Institute for Materials Science (NIMS). He received his Ph.D. degree from the University of Osaka Prefecture in 1988. He worked at SHARP Corporation since 1993, and started on the research of dye-sensitized solar cells. He has renewed the world record efficiency of dye-sensitized solar cells (cell and module) for several times. On 2008, he moved to NIMS, and established a research on next generation solar cells. Recently, he moved to research perovskite solar cells and achieved the first certified efficiency of 15% with cell area larger than 1 cm2. He is an inventor in more than 100 patents and an author in ca 200 scientific publications such as Science, Nature Energy, Advanced Materials in the field of next generation solar cells. His current research interests involve fundamental research in perovskite solar cells, dye-sensitized solar cells, and organic solar cells.
Dr. Liyuan Han is a director of photovoltaic materials unit, National Institute for Materials Science. He received a doctor’s degree from the University of Osaka Prefecture in 1988. During 1990-1993, he worked in Dainippon Ink & Chemicals Inc. on organic photoconductor materials. He then moved to SHARP Corporation. He had been investigating dye-sensitized solar cells, especially, improving the conversion efficiency of cells and sub-modules, and developing new sensitized dyes, since 1996. He moved to current position from June 2008 and developed large area of perovskite solar cells with certificated efficiency 18.2% in NIMS. He is inventor in about 100 patents and author in 140 scientific publications in the field of thin film solar cells. His current research interests involve perovskite solar cells and dye sensitized solar cells.
Dr. Hongwei Han is Professor at Huazhong University of Science and Technology (HUST) / Wuhan National Laboratory for Optoelectronics (WNLO), and Distinguished Professor of ‘ChangJiang Scholars Program’. He obtained his bachelor degree from the College of Chemistry and Molecular Science in 2000 and his doctor degree from the School of Physics and Technology in 2005 at Wuhan University. And then, Dr. Han continued his research work at Monash University of Australia as Postdoc. After that he joined HUST and WNLO in 2008 and began to establish his group of Printable Mesoscopic Photovoltaics & Optoelectronics. Since 2000, Dr. Han has worked on the fully printable mesoscopic solar cells. The characteristic of such device is to print nanocrystalline layer, spacer layer and counter electrode layer on a single conductive substrates layer-by-layer, and then sensitized with dye and filled with electrolyte (or filled with perovskite materials directly). In 2015 his group fabricated 7m2 fully printable mesoscopic perovskite solar module. His more than 60 peer-reviewed publications in Science、 Nature Chemistry、 Nature Communications、J. Am. Chem. Soc.、Energy Environ. Sci. et al. have been published and 15 Patents have been applied within past five years.


Thomas Hannappel is W3 full professor (physics) at Ilmenau University of Technology, Germany, department ‘Photovoltaics’, since 2011. Before, he was provisional head of the Institute “Materials for Photovoltaics” at the Helmholtz-Zentrum Berlin and lecturer at the Free University Berlin, where he received his state doctorate in 2005. At Technical University Berlin he obtained his PhD in Physics with studies on ultrafast dynamics of photo-induced charge carrier separation in dye solar cells, he performed at Fritz-Haber-Institute Berlin of the Max-Planck-Society. In 2003/04 he conducted research on silicon/III-V-interfaces at National Renewable Energy Laboratory, Colorado. His current investigations are focused on high-performance solar cells and critical interfaces and he is a key player in the fields solar energy conversion and reactions of critical semiconductor interfaces including silicon/ and germanium/III-V-interfaces, and nano- and quantum-structures.
Kenneth Hanson received a B.S. in Chemistry from Saint Cloud State University (2005), his Ph.D. from the University of Southern California (2010), followed by an appointment as a postdoctoral scholar at the University of North Carolina at Chapel Hill (2010–2013). His independent research career began in 2013 at Florida State University as a member of the Department of Chemistry & Biochemistry and is affiliated with the Materials Science & Engineering program. His current research interests include the design, synthesis, and characterization of photoactive molecules/materials with particular emphasis on manipulating energy and electron-transfer dynamics at organic–inorganic interfaces using multilayer self-assembly.


Sophia Haussener is a Professor heading the Laboratory of Renewable Energy Science and Engineering at the Ecole Polytechnique Federale de Lausanne (EPFL). Her current research is focused on providing design guidelines for thermal, thermochemical, and photoelectrochemical energy conversion reactors through multi-physics modelling and experimentation. Her research interests include: thermal sciences, fluid dynamics, charge transfer, electro-magnetism, and thermo/electro/photochemistry in complex multi-phase media on multiple scales. She received her MSc (2007) and PhD (2010) in Mechanical Engineering from ETH Zurich. She was a postdoctoral researcher at the Joint Center of Artificial Photosynthesis (JCAP) and the Lawrence Berkeley National Laboratory (LBNL) between 2011 and 2012. She has published over 70 articles in peer-reviewed journals and conference proceedings, and 2 books. She has been awarded the ETH medal (2011), the Dimitris N. Chorafas Foundation award (2011), the ABB Forschungspreis (2012), the Prix Zonta (2015), the Global Change Award (2017), and the Raymond Viskanta Award (2019), and is a recipient of a Starting Grant of the Swiss National Science Foundation (2014).
The author was graduated from Osaka University in 1978 and received Ph.D from Osaka University in 1983. He joined R&D Center in Toshiba from 1978 to 2000, during which the author was engaged in development of ULSI lithography, solar cells direct methanol fuel cells, and polysilane. He joined polysilane research in Robert West group of Wisconsin University (US) from 1988 to 1990. He was a professor of Kyushu Institute of Technology (National Institute) since 2001. From 2019, the author is a professor in The University of Electro-Communications in Japan. His research interest is printable solar cells.
Professor Peter Head CBE FREng FRSA Chairman and Founder of Resilience Brokers Ltd, Visiting Professor University of Bristol in sustainable systems engineering.
Peter is a civil and structural engineer who has become a recognised world leader in major bridges, advanced composite technology and in sustainable development in cities and regions.
In 2008 he was named by the Guardian Newspaper as one of 50 people that could ‘save the planet’.
He was cited by Time magazine in 2008 as one of 30 global eco-heroes and has been one of CNN’s Principle Voices.
In 2011 he was awarded the CBE in the New Year’s Honours List for services to Civil Engineering and the Environment.
In April 2011 he left Arup to set up The Ecological Sequestration Trust, a Charity which has brought together the world’s top scientists, engineers, economists, financiers, health, ecology and other specialists to create, demonstrate and scale a CHEER (Collaborative Human-Ecological-Economics-Resource systems) GIS platform to enable regions all over the world to plan, design and implement inclusive resilient growth using low carbon urban-rural development approaches which are energy, water and food secure. The first prototype was tested in Accra Ghana in 2016 and Peter is now leading a plan in Resilience Brokers Ltd with global partners to develop it fully and roll it out to 200 city region demonstrators in most countries by 2025.
Peter was a member of SDSN Thematic Group 9 that wrote and lobbied successfully for an urban SDG, SDG11.
Peter was one of the authors of the Planetary Health Commission 2015 Report on Safeguarding Human Health in the Anthropocene Era. He was also one of the authors of the Royal Society Report on Resilience to Extreme Weather 2015. He was editor of Roadmap 2030 an action plan for financing SDG delivery in cities including the key role of the Faiths. This was presented at Habitat III in Quito as the New Urban Agenda was launched.
He is a member of the UNDRR GAR 19/22 Advisory Board and a member of the Global Risk Assessment Framework GRAF working group.
Peter was a member of the Swansea University SPECIFIC advisory board until 2019 when he became the Chair of the associated SUNRISE Advisory Board.
Martin Heeney is a Professor of Organic Materials Chemistry and Royal Society Wolfson Fellow at Imperial College London. He is a graduate of the University of East Anglia and received his PhD from the same institution in 1999 under the supervision of Prof. Michael Cook. Following eight years in industry, he joined the Materials Department at Queen Mary University of London as a senior lecturer in 2007 before moving to Imperial in 2009. His research interests include the design, synthesis and characterisation of solution processed materials for a variety of applications. He has published over 250 research papers, 5 book chapters and over 100 patents. In 2013 he was awarded the RSC Corday-Morgan Medal for most meritorious contributions to chemistry by a scientist under the age of 40. For the last five years, he has been named by Thomson Reuters as a HighlyCited researcher in the field of Materials Science.
Thomas Heine graduated in physics from TU Dresden under the guidance of Gotthard Seifert, with research stages in Montréal (Dennis R. Salahub) and Exeter (Patrick Fowler). After postdoctoral stages in Bologna (Francesco Zerbetto) and Geneva (Jacques Weber) he obtained the venia legendi in Physical Chemistry at TU Dresden. In 2008 he was appointed as Associated Professor of Theoretical Physics/Theoretical Materials Science at Jacobs University and was promoted to Full Professor in 2011. From 2015-2018 he held the Chair of Theoretical Chemistry at University of Leipzig, Germany. Since 2018 is professor of theoretical chemistry at TU Dresden in joint appointment with Helmholtz-Center Dresden-Rossendorf. His research interests include molecular framework compounds, two-dimensional materials, theoretical spectroscopy, and the development of methods and software for materials science.


ngmdgh
Prof. Z. Hens received his PhD in applied physics from Ghent University in 2000, worked as a postdoctoral fellow at Utrecht University and was appointed professor at the Ghent University department of inorganic and physical chemistry in 2002. His research concerns the synthesis, processing and characterization of colloidal nanocrystals.


Laura Herz is a Professor of Physics at the University of Oxford. She received her PhD in Physics from the University of Cambridge in 2002 and was a Research Fellow at St John's College Cambridge from 2001 - 2003 after which she moved to Oxford. Her research interests lie in the area of organic and organic/inorganic hybrid semiconductors including aspects such as self-assembly, nano-scale effects, energy-transfer and light-harvesting for solar energy conversion.
Professor Dr. Renate Hiesgen, born on 18.08.1958 in Germany, is Professor for Experimental Physics at the University of Applied Sciences, Department of Basic Science in Esslingen, Germany.
She studied Physics at the University of Münster and received her PhD with electron microscopy studies under the supervision of Prof. L. Reimer in 1989.
Her work on in-situ characterization of interfaces by scanning tunneling microscopy started at the Institute for Solar Energy Research in Hannover in 1998. After continued research with scanning tunneling and atomic force microscopy at the Research Center Jülich GmbH and the Technical University Munich, she became Professor for Experimental Physics at the University of Applied Sciences Esslingen in 2000. Main topics of her group are characterization of materials and interfaces for energy applications. In addition to battery materials and semiconductors for solar energy conversion, a focus of her work in recent years has been the investigation of ionomers and electrodes for applications in fuel cells and electrolysis with material-sensitive and conductive studies. She has authored or coauthored more than 80 publications and was recipient of the f-cell award 2007 in the category research.
Hugh Hillhouse is the Rehnberg Professor in the Department of Chemical Engineering at the University of Washington. Hugh earned a Master’s degree in Physics and a Doctorate in Chemical Engineering from the University of Massachusetts. After an NSF International Postdoctoral Fellowship at the Kavli Institute for Nanoscience at Delft University in the Netherlands working with Teun Klapwijk on organic semiconductors, he started as an Assistant Professor at Purdue University in 2002 working on semiconductor nanocrystals and photovoltaics. He later spent a year on sabbatical at the National Renewable Energy Laboratory in Golden Colorado working with Matt Beard and Art Nozik on multiple exciton generation and quantum dot solar cells before moving to the University of Washington in 2010 as the Endowed Rehnberg Chair Professor. He was the Thin Film Photovoltaics thrust leader for the Bay Area Photovoltaic Consortium (BAPVC) and has organized symposia for the National Academy of Engineering’s Frontiers of Engineering along with MRS and E-MRS. He has been on the editorial or conference advisory boards for Chemistry of Materials and the International Conference on Ternary and Multinary Compounds. He has published ~100 peer-reviewed articles that have been cited ~8,800 times with an h-index of 42. His research interest lies at the nexus of materials chemistry and solar energy conversion. His most recent efforts focus on perovskite stability and data science/machine learning.
Anita Ho-Baillie is the John Hooke Chair of Nanoscience at the University of Sydney. She completed her Bachelor of Engineering degree on a Co-op scholarship in 2001 and her PhD at the University of New South Wales (UNSW) in 2005. Anita has worked at British Aerospace, Alcatel Australia, Pacific Solar and Solar Sailor. She is also an Adjunct Professor at UNSW. Her research interest is to engineer materials and devices at nanoscale for integrating solar cells onto all kinds of surfaces generating clean energy. A highly cited researcher, she is well known in her achievements in setting solar cell energy efficiency world records in various categories and has been identified as one of the leaders in advancing perovskite solar cells.
Jennifer A. Hollingsworth is a Los Alamos National Laboratory (LANL) Fellow and Fellow of the American Physical Society, Division of Materials Physics, and The American Association for the Advancement of Science. She currently serves as Councilor for the Amercan Chemical Society Colloid & Surface Chemistry Division. She holds a BA in Chemistry from Grinnell College (Phi Beta Kappa) and a PhD degree in Inorganic Chemistry from Washington University in St. Louis. She joined LANL as a Director’s Postdoctoral Fellow in 1999, becoming a staff scientist in 2001. In 2013, she was awarded a LANL Fellows’ Prize for Research for her discovery and elaboration of non-blinking “giant” quantum dots (gQDs). In her role as staff scientist in the Center for Integrated Nanotechnologies (CINT; http://www.lanl.gov/expertise/profiles/view/jennifer-hollingsworth), a US DOE Nanoscale Science Research Center and User Facility, she endeavors to advance fundamental knowledge of optically active nanomaterials, targeting the elucidation of synthesis-nanostructure-properties correlations toward the rational design of novel functional materials. Her gQD design has been extended to multiple QD and other nanostructure systems, and several are being explored for applications from ultra-stable molecular probes for advanced single-particle tracking to solid-state lighting and single-photon generation. A recent focus of her group is to advance scanning probe nanolithography for precision placement of single nanocrystals into metasurfaces and plasmonic antennas.


Dec. 2006 - Sept. 2008 Post Doc., University of California, Los Angeles, United States
Sept. 2001 - Nov. 2006 Ph. D. Institute of Chemistry, Chinese Academy of Sciences, China
Sept. 1997 - Aug. 2001 B.S. University of Science and Technology, Beijing, China
Oct. 2010 - Present Professor, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
Sept. 2011 - Present Professor, School of Chemistry and Biological Engineering, University of Science and Technology, Beijing, China
Oct. 2009 - Sept. 2010 CTO, Solarmer Materials Inc. Beijing, China
Oct. 2008 - Sept. 2010 Director of Research, Solarmer Energy Inc., El Monte, CA, US
Dr. Hou’s research focuses on organic photovoltaic materials. Two of his major interests: (a) Design and synthesis of new conjugated polymers towards the applications in highly efficient polymer solar cells; (b) Improving photovoltaic performance of polymer solar cells by morphology control and device engineering. He has co-authored 170+ papers in peer-reviewed journals and published 15 patents, and these works have been cited more than 20,000 times.
Arjan Houtepen obtained his PhD Cum Laude under supervision of prof. Vanmaekelbergh at Utrecht University and subsequently became tenure track assistant professor in Delft. In 2009/2010 he was a visiting scientist in the group of prof. Feldmann in Munich. At present he is associate professor in the optoelectronic materials section at Delft University.




Sven Huettner currently holds a position as a Juniorprofessor for Organic and Hybrid Electronics at the University of Bayreuth, Germany. Before he joined the department of Macromolecular Chemistry I at Bayreuth, he worked as a Research Associate at the Cavendish Laboratory, University of Cambridge in the group of Prof. Sir Richard Friend. His Research is concered with novel materials based on conjugated polymers and hybrid semiconductors for applications in solar cells and transistors.


Taeghwan Hyeon received his B. S. (1987) and M. S. (1989) in Chemistry from Seoul National University (SNU), Korea. He obtained his Ph.D. in Chemistry from U. Illinois at Urbana-Champaign (1996), and conducted one-year postdoctoral research at the Catalysis Center of Northwestern University. Since he joined the faculty of the School of Chemical and Biological Engineering of Seoul National University in 1997, he has focused on the synthesis and applications of uniform-sized nanoparticles and related nanostructured materials, and published > 400 papers in prominent international journals (> 58,000 citations and h-index of > 124). He is a SNU Distinguished Professor. In September 2020, he was selected as 2020 Citation Laureate (known as Nobel Prize watch list) in Chemistry by Clarivate Analytics/Web of Science. In 2011, he was selected as “Top 100 Chemists” of the decade by UNESCO&IUPAC. Since 2014, he has been chosen as “Highly Cited Researcher” in Chemistry and Materials Science areas by Clarivate Analytics. Since 2012, he has been serving as a Director of Center for Nanoparticle Research of Institute for Basic Science (IBS). He is Fellow of Royal Society of Chemistry (RSC) and Materials Research Society (MRS). He received many awards including the Korea S&T Award from the Korean President (2016), Hoam Prize (2012, Samsung Hoam Foundation), POSCO-T. J. Park Award (2008), and the IUVSTA Prize for Technology (International Union for Vacuum Science, Technique and Applications, 2016). Since 2010, he has served as an Associate Editor of Journal of the American Chemical Society. He has been serving as editorial (advisory) board members of ACS Central Science, Advanced Materials, Nano Today, and Small.
Maria Ibáñez was born in La Sénia (Spain). She graduated in physics at the University of Barcelona, where she also obtained her PhD in 2013, under the supervision of Prof. Dr. Cabot and Prof. Dr. Morante. Her PhD thesis was qualified Excellent Cum Laude and awarded with the Honors Doctorate by the University of Barcelona. Her PhD research was funded by a Spanish competitive grant (FPU) which supported her to conduct short-term research stays in cutting-edge laboratories. In particular she worked at CEA Grenoble (2009), the University of Chicago (2010), the California Institute of Technology (2011), the Cornell University (2012) and the Northwestern University (2013). In 2014, she joined the group of Prof. Dr. Kovalenko at ETH Zürich and EMPA as a research fellow where in 2017 she received the Ružička Prize. In September 2018 she became an Assistant Professor (tenure-track) at IST Austria and started the Functional Nanomaterials group.
Shogo Ishizuka is currently the group leader of the Compound Thin-Film Materials Group (CTFM) of the Research Institute for Energy Conservation (iECO), the National Institute of Advanced Industrial Science and Technology (AIST), Japan. He received his Ph.D. from the University of Tsukuba in 2003, working with Prof. Katsuhiro Akimoto on the growth of oxide semiconductor thin films for solar cell applications, and started working on Cu(In,Ga)Se2 (CIGS) thin film solar cells as a post doc at AIST. In 2004, he joined the Research Center for Photovoltaics (RCPV), AIST, as a research scientist and continued studying CIGS solar cells. From 2011-2012, he worked for the National Center For Photovoltaics (NCPV), National Renewable Energy Laboratory (NREL), USA, as a visiting scientist for one year. He became a senior researcher in 2010, a chief senior researcher in 2017, and the group leader in 2020. His research background is applied physics and materials science based on thin film technologies including film growth, device fabrication and characterizations. His current research interests include chalcogenide materials for thin-film photovoltaics and related applications.
i
Seigo Ito received his Ph.D. from the University of Tokyo (Japan), with a thesis that was the first to discuss Graetzel-type dye-sensitized solar cells in Japan. He worked in the Laboratory of Professor Shozo Yanagida (Osaka University, Japan) for two years, and in the Laboratory of Professor Michael Graetzel, at the Swiss federal Institute of Technology (EPFL) in Lausanne as a postdoctoral scientist for over three years, where his efforts focused on the progress of high-efficiency dye-sensitized solar cells. He is currently professor at University of Hyogo, making new printable cost-effective solar cells.
Grigorios Itskos obtained a B.Sc. in Physics in 1997 from University of Thessaloniki, Greece and carried out his PhD studies at SUNY at Buffalo, USA (Ph.D. in Physics 2003), under the supervision of Prof. Athos Petrou within the newly-born field of semiconductor spintronics. He worked as postdoctoral researcher (Imperial College London, 2003-2007) under the supervision of Profs. Donal Bradely and Ray Murray, focusing on photophysical studies of hybrid organic-inorganic semiconductors. In September 2007 he become a faculty member at the Department of Physics, University of Cyprus (Lecturer 2007-2011, Assistant Professor 2011- 2017, Associate Professor 2017- now). His group research activities focus on optical studies of inorganic, organic and hybrid solution-processed semiconductors, with recent emphasis on the characterization and optoelectronic applications of semiconductor nanocrystals.
Prof. Dr. Wolfram Jaegermann: Curriculum Vitae Wolfram Jaegermann, born 1954, studied Chemistry at the University of Dortmund and got his Ph.-D. in Inorganic Chemistry from the University of Bielefeld, Germany. Afterwards he started his scientifc career as a Post-Doc at the Hahn-Meitner-Institute in Berlin in Photoelectrochemistry. He spent one year as DuPont Guest Scientist in Wilmington, Deleware, before he got his Habilitation in Physical Chemistry at the Free University of Berlin. Afterwards he was appointed Head of Department of Interfaces at the Hahn-Meitner-Institute, before in 1997 he became Full Professor with the chair of Surface Science, in the newly founded Department of Materials Science, TU Darmstadt. His main research fields are: Surface Science, Photovoltaic Converters, Intercalation Batteries, Inorganic/Organic Composites, Semiconductor Interfaces, Photoelectrochemistry.
Wolfram Jaegermann, born 1954, studied Chemistry at the University of Dortmund and got his Ph.-D. in Inorganic Chemistry from the University of Bielefeld, Germany. Afterwards he started his scientifc career as a Post-Doc at the Hahn-Meitner-Institute in Berlin in Photoelectrochemistry. He spent one year as DuPont Guest Scientist in Wilmington, Deleware, before he got his Habilitation in Physical Chemistry at the Free University of Berlin. Afterwards he was appointed Head of Department of Interfaces at the Hahn-Meitner-Institute. In 1997 he became Full Professor with the chair of Surface Science, in the newly founded Department of Materials Science, TU Darmstadt. His main research fields are: Surface Science, Photovoltaic Converters, Intercalation Batteries, Inorganic/Organic Composites, Semiconductor Interfaces, Photoelectrochemistry.
René Janssen is university professor at the Eindhoven University of Technology (TU/e). He received his Ph.D. in 1987 from the TU/e for a thesis on electron spin resonance and quantum chemical calculations of organic radicals in single crystals. He was lecturer at the TU/e since 1984, and a senior lecturer in physical organic chemistry since 1991. In 1993 and 1994 he joined the group of Professor Alan J. Heeger (Nobel laureate in 2000) at the University of California Santa Barbara as associate researcher to work on the photophysical properties of conjugated polymers. Presently the research of his group focuses on functional conjugated molecules and macromolecules as well as hybrid semiconductor materials that may find application in advanced technological applications. The synthesis of new materials is combined with time-resolved optical spectroscopy, electrochemistry, morphological characterization and the preparation of prototype devices to accomplish these goals. René Janssen has co-authored more than 600 scientific papers. He is co-recipient of the René Descartes Prize from the European Commission for outstanding collaborative research, and received the Research Prize of The Royal Institute of Engineers and in The Netherlands for his work. In 2015 René Janssen was awarded with the Spinoza Prize of The Dutch Research Council.
Dr. Quentin Jeangros received a PhD in Materials Science from EPFL in 2014 for his work on solid oxide fuel cells degradation pathways. After a postdoc between the University of Basel and the Photovoltaics and Thin Film Electronics Laboratory (PV-Lab) of EPFL on transparent conductive oxides, Quentin has overseen the "Perovskite Cells for Tandem Applications" activities at EPFL PV-Lab since early 2018. Within the laboratory headed by Prof. C. Ballif, his team consists of 6 PhD students and postdocs dedicated to the development of high-efficiency perovskite/silicon solar cells. His research activities focus on the use and development of advanced electron microscopy characterisation methods to understand and optimise the nanostructure of solar materials materials, with the aim of improving efficiency and reliability.
Professor Alex Jen obtained his Ph. D. degree from the Department of Chemistry, University of Pennsylvania in 1984. He is currently the Boeing-Johnson Chair Professor and Department Chair of the Materials Science & Engineering at the University of Washington, Seattle. He is also serving as the Chief Scientist of the Clean Energy Institute established by the governor of the Washington State. Dr. Jen’s research interest is focused on utilizing molecular, polymeric and biomacromolecular self-assembly to create ordered arrangement of organic and inorganic functional materials for photonics, opto-electronics, nanomedicine, and nanotechnology. He has co-authored more than 500 publications, given over 400 invited presentations, and has more than 20,000 citations and a H-index of 72. He is also a co-inventor for more than 50 patents and invention disclosures. For his pioneering contributions in organic photonics and electronics, he was elected as Fellow by several professional societies including the MRS Fellow of the Materials Research Society, ACS Fellow of the American Chemical Society, the AAAS Fellow by American Association of the Advancement of Science, the OSA Fellow of Optical Society of America, SPIE Fellow of the International Society of Optical Engineering, and PMSE Fellow of the American Chemical Society’s Polymeric Materials Science & Engineering Division. He was also elected as an Academician of the Washington State Academy of Sciences.
Kwang Seob Jeong is an Associate Professor in the Department of Chemistry at Korea University. He obtained his B.S. in chemistry at Korea University and Ph.D. in chemistry at the Pennsylvania State University in 2013. He worked at the University of Chicago as a JFI post-doctoral scholar from 2013 to 2015 before joining the chemistry department at Korea University. In 2018, he was nominated as 2018 emerging investigators by the Chemical Communications of Royal Society of Chemistry (RSC) and won the POSCO TJ Park Science Fellow in 2019. His research focuses on the infrared colloidal nanocrystals.
I graduated from the University of Utrecht in the Netherlands (1995) and obtained my PhD in metalloproteins under the supervision of Prof. G.W. Canters at Leiden University (2001). After my PhD, I moved to the United Kingdom to work with Prof. F.A. Armstrong at the University of Oxford (2000-2002) on the electrochemical characterisation of metalloproteins.
I was awarded a BBSRC David Phillips 5-year fellowship which I took up at the School of Physics & Astronomy at the University of Leeds (2002-2007) to work on the modification and characterisation of electrode surfaces for bioelectrochemistry, for which I received the British Biophysical Society (BBS) Young Investigator Award in 2006. In 2007 I moved to the School of Biomedical Sciences at Leeds, where after an ERC fellowship (2012-2016) I became Professor in Molecular Biophysics.
Oana Jurchescu is an Associate Professor of Physics at Wake Forest University (WFU). She received her PhD in 2006 from University of Groningen, the Netherlands, and was a postdoctoral researcher at the National Institute of Standards and Technology in Gaithersburg, MD, until 2009, when she joined the Physics Department at Wake Forest University as an Assistant professor. Her expertise is in charge transport in organic and organic/inorganic hybrid semiconductors, device physics and semiconductor processing. She published over 70 peer-reviewed articles, 4 invited book chapters, 3 patents and gave over 50 invited or plenary talks at conferences. She won the 2013 National Science Foundation CAREER award, the ORAU Ralph E. Powe Junior Faculty Enhancement award, the university award for excellence in research, the university innovation award, as well as the prize for excellence in teaching and the award for excellence in mentorship. She served in a variety of capacities, including program chair and co-chair, for over 30 international conferences and workshops such as MRS, APS, SPIE, etc.
born
Prashant V. Kamat is a Professor of Chemistry & Biochemistry, Senior Scientist at Radiation Laboratory, and Concurrent Professor of Department of Chemical and Biomolecular Engineering, University of Notre Dame. He earned his doctoral degree (1979) in Physical Chemistry from the Bombay University, and postdoctoral research at Boston University (1979-1981) and University of Texas at Austin (1981-1983). He joined Notre Dame in 1983 and initiated the project on utilizing semiconductor nanostructures for light energy conversion. His major research interests are in three areas : (1) catalytic reactions using semiconductor and metal nanoparticles, nanostructures and nanocomposites, (2) develop advanced materials such as inorganic-organic hybrid assemblies for energy conversion, and (3) environmental remediation using advanced oxidation processes and chemical sensors. He is currently serving as a Deputy Editor of Journal of Physical Chemistry Letters and A/B/C and a member of the advisory board of scientific journals, Langmuir, Research on Chemical Intermediates, Electrochemistry and Solid State Letters, and Interface. He has written more than 400 peer-reviewed journal papers, review articles and book chapters with more than 40000 citations and carries an h-index of 109. He has edited two books in the area of nanoscale materials. He was a fellow of Japan Society for Promotion of Science during 1997 and 2003 and was awarded Honda-Fujishima Lectureship award by the Japanese Photochemical Society in 2006 and Langmuir Lectureship Award in 2012. He is a Fellow of the Electrochemical Society, American Chemical Society and AAAS.
Patanjali Kambhampati. BA Carleton College USA (1992), PHD University of Texas (USA) 1998, PDF University of Texas (USA) 1999 - 2001. Professor of Chemistry McGill University (2003 - present). Research focus of semiconductor nanostructures and femtosecond laser spectroscopy.




Claudine Katan (born Hoerner) received her Ph.D. in physics (nonlinear optics) from the University of Strasbourg (ULP), France in 1992. She subsequently served as a lecturer in physics at the University of Rennes (UR1), France, before being appointed as a CNRS Research Investigator in the Physics Department at Rennes in 1993. Until 2003, her research interests concerned the properties of molecular charge-transfer crystals and the topology of electron densities mainly through approaches based on density functional theory (e.g. the CP-PAW code by P. E. Blöchl, IBM-Zurich). She then joined the Chemistry Department at Rennes and turned her research interests toward the structural, electronic and linear/nonlinear optical properties of molecular and supramolecular chromophores using various theoretical approaches—from modeling to state-of-the-art electronic structure calculations (e.g. CEO methodology by S. Tretiak, LANL) . Since the end of 2010, her research has also been devoted to 3D and 2D crystalline materials of the family of halide perovskites based on solid-state physics concepts. Overall, her theoretical work is closely related to the experimental research developed in-house and through international collaboratorations.
Eugene A. Katz received his MSc degree (1982) in Semiconductor Materials Science and Ph. D. (1990) in solid state physics from the Moscow Institute of Steel and Alloys. In 1995, he joined the Ben-Gurion University of the Negev and has been working in the Department for Solar Energy and Environmental Physics ever since (now as a full professor). His research interests include a wide range of photovoltaic materials and devices, such as organic and perovskite-based photovoltaics, concentrator solar cells operated at ultra-high solar concentration (up to 10,000 suns), etc. He has published more than 120 peer-reviewed papers on these topics. In 2018 Prof. Katz was awarded the IAAM Medal (by the International Association of Advanced Materials) for the outstanding research in the field of New Energy Materials & Technology.
Heading, ECOFIRST, A Tata Enterprise, subsidiary of Tata Consulting Engineers (TCE) since last 8 years. Chitranjan has played an instrumental role in the growth of the company and in its regional and sectoral spread. Ecofirst has delivered more than 600 sustainable projects and has grown 5 times in revenue and employee strength in last 5 years only.
Chitranjan is an individual who make a difference by deepening self awareness in relation to the world around. In doing so, adopt new ways of seeing, thinking and interacting that result in innovative, sustainable solutions. His vision is to deliver superior quality sustainable products and services to the community through innovations, leadership and partnerships. Chitranjan is convinced that technology is the primary driver of change, however, the change may not be limited to technologies / newer (futuristic) technologies, but also largely attributes from human behaviour, new innovations, political, socio-cultural or economic activities, which all shall lead to sustainable future for all.
Chitranjan is an intrepid person who can take calculated risks, more focused on execution and ground realities, optimistically pursue new opportunities, little bit thick skinned but not insensitive. Always prefer to prepare for future in professional and personal life, pragmatically inclusive and comfortable with variety of people. Good at team building capabilities and managing multicultural teams. Chitranjan has won Prof Wil Segeren Award in UNESCO-IHE as recognition for international co-operation amongst representation of participants from sixty countries.
Chitranjan is a Civil Engineer and member of Institution of Engineers in India. He has done master’s in water resources (Hydroinformatics) from UNESCO-IHE. Chitranjan has widespread experience ranging from working with government for over 10 years, for land development and Knowledge outsourcing works for North America and India. He is the key person at the inception of Ecofirst, which is the firm established in 2008 to push clean tech and sustainable development. Ecofirst is founder member of Indian Green Building council and Chitranjan is member of the Executive Committee. Chitranjan cherish a dream of making a sustainable Senior Citizen home along with child care and Autistic child care home at same place as mutual support for sustainable life and society building. He is freemason and love reading history and philosophy.






Dr. Andrei Kholkin received his B.Sc. and M.Sc. degrees in Physics from the St. Petersburg State University and Ph.D. degree from the A. F. Ioffe Physical-Technical Institute, Russia. In consequent years, he held research positions in IFW (Dresden, Germany), EPFL (Lausanne, Switzerland) and Rutgers University (USA). He is currently a research coordinator and head of the laboratory of advanced microscopy of nanomaterials in the University of Aveiro (Portugal). His group develops multifunctional materials (including ferroelectrics and multiferroics) and scanning probe microscopy techniques. He is a coauthor of more than 500 technical papers in this area including numerous reviews and book chapters. He was a coordinator of three European projects on multifunctional materials and serves as an associate editor for the IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control (TUFFC) and member of editorial boards of several scientific journals. He is a member of the Ferroelectric Committee of IEEE and was a recipient of the “Excellency” award from the Portuguese Foundation for Science and Technology. He has been a Technical Committee member of several international conferences and cofounded a new conference series on Piezoresponse Force Microscopy. He was a guest editor of the special issues on ferroelectrics in TUFFC, Journal of Applied Physics and Materials Research Society Bulletin. Dr. Kholkin is a Fellow of IEEE (class 2012), and member of IEEE, Materials Research Society and Portuguese Materials Society.


Ji-Seon Kim is Professor of Solid State Physics and Director of the Plastic Electronics Centre for Doctoral Training (https://www.imperial.ac.uk/plastic-electronics/) at Imperial College London. She has previously taken up an EPSRC Advanced Research Fellowship at the University of Cambridge, obtained a PhD in Physics in 2000. Her research focuses on the basic science and technology of Nanoscale Functional Materials such as organics, organic/ inorganic hybrids, nanomaterials and their related applications, as well as developing novel Nanometrology for these functional materials (http://www.imperial.ac.uk/nanoanalysis-group).


Dr. Yunseok Kim is an associate professor in the School of Materials Science and Engineering, Sungkyunkwan University (SKKU), Korea. He received his M.S. and Ph.D. degrees in Materials Science and Engineering from Korea Advanced Institute of Science and Technology (KAIST), Korea, in, respectively, 2004 and 2007. From 2008 to 2010, he was awarded the Humboldt research fellowship from the Alexander von Humboldt foundation which allowed him to work as a postdoctoral researcher at Max Planck Institute of Microstructure Physics, Germany. Then, from 2011 to 2012, he was a postdoctoral researcher at Oak Ridge National Laboratory, USA. In 2012, he joined the School of Materials Science and Engineering, SKKU, Korea. His research interests include scanning probe microscopy studies of electromechanical, ferroelectric, transport, and ionic phenomena at the nanoscale.


He studied electrical engineering in Stuttgart and started working on Si solar cells in 2004 under the guidance of Uwe Rau at the Institute for Physical Electronics (ipe) in Stuttgart. After finishing his undergraduate studies in 2006, he continued working with Uwe Rau first in Stuttgart and later in Juelich on simulations and electroluminescence spectroscopy of solar cells. After finishing his PhD in 2009 and 1.5 years of postdoc work in Juelich, Thomas Kirchartz started a three year fellowship at Imperial College London working on recombination mechanisms in organic solar cells with Jenny Nelson. In 2013, he returned to Germany and accepted a position as head of a new activity on hybrid and organic solar cells in Juelich and simultaneously as Professor for Photovoltaics with Nanostructured Materials in the department of Electrical Engineering and Information Technology at the University Duisburg-Essen. Kirchartz has published >100 isi-listed papers, has co-edited one book on characterization of thin-film solar cells whose second edition was published in 2016 and currently has an h-index of 38.

Victor I. Klimov is a Fellow of Los Alamos National Laboratory and the Director of the Center for Advanced Solar Photophysics of the U.S. Department of Energy. He received his M.S. (1978), Ph.D. (1981), and D.Sc. (1993) degrees from Moscow State University. He is a Fellow of both the American Physical Society and the Optical Society of America, and a recipient of the Humboldt Research Award. His research interests include optical spectroscopy of semiconductor and metal nanostructures, carrier relaxation processes, strongly confined multiexcitons, energy and charge transfer, and fundamental aspects of photovoltaics.
Christian Klinke studied physics at the University of Karlsruhe (Germany) where he also obtained his diploma degree in the group of Thomas Schimmel. In March 2000 he joined the group of Klaus Kern at the Institute of Experimental Physics of the EPFL (Lausanne, Switzerland). Then from 2003 on he worked as Post-Doc at the IBM TJ Watson Research Center (Yorktown Heights, USA) in the group of Phaedon Avouris. In 2006 then he became member of the Horst Weller group at the Universitiy of Hamburg (Germany). In 2007 he started as assistant professor at the University of Hamburg. In 2009 he received the German Nanotech Prize (Nanowissenschaftspreis, AGeNT-D/BMBF). His research was supported by an ERC Starting Grant and a Heisenberg fellowship of the German Funding Agency DFG. Since 2017 he is an associate professor at the Swansea University and since 2019 full professor at the University of Rostock.
Dr. Evelyne Knapp is a research associate at the Institute of Computational Physics at the Zurich University of Applied Sciences in Winterthur, Switzerland. She holds a Diploma and Ph.D. degree in Computational Science and Engineering from ETH Zurich.
Mathieu Kociak is researcher at the Centre National de la Recherche Scientifique (CNRS), with a research director position in the STEM group at the Laboratory for Solid States Physics (LPS) in Orsay, France. His main research interests include the study of the correlations between the structure, and the optical and electronic properties of individual nanoobjects, that he tackles through a combination of instrumental developments in electron microscopy, experiments on the STEM and theory of the electron/matter/photon interaction. He is currently working especially on nanooptics with fast electrons using EELS and nanocathodoluminescence (STEM-CL).


Marc T.M. Koper is Professor of Surface Chemistry and Catalysis at Leiden University, The Netherlands. He received his PhD degree (1994) from Utrecht University (The Netherlands) in the field of electrochemistry. He was an EU Marie Curie postdoctoral fellow at the University of Ulm (Germany) and a Fellow of Royal Netherlands Academy of Arts and Sciences (KNAW) at Eindhoven University of Technology, before moving to Leiden University in 2005. His main research interests are in fundamental aspects of electrocatalysis, proton-coupled electron transfer, theoretical electrochemistry, and electrochemical surface science.
I am currently an Assistant Professor at the University of Montreal, Department of Chemistry. My overarching motivation is to discover and implement the chemistry necessary to transition to a sustainable energy-based society. Specifically, I am developing materials to convert solar energy to chemical fuels as an energy storage media.
Maksym Kovalenko has been a tenure-track Assistant Professor of Inorganic Chemistry at ETH Zurich since July 2011 and Associate professor from January 2017. His group is also partially hosted by EMPA (Swiss Federal Laboratories for Materials Science and Technology) to support his highly interdisciplinary research program. He completed graduate studies at Johannes Kepler University Linz (Austria, 2004-2007, with Prof. Wolfgang Heiss), followed by postdoctoral training at the University of Chicago (USA, 2008-2011, with Prof. Dmitri Talapin). His present scientific focus is on the development of new synthesis methods for inorganic nanomaterials, their surface chemistry engineering, and assembly into macroscopically large solids. His ultimate, practical goal is to provide novel inorganic materials for optoelectronics, rechargeable Li-ion batteries, post-Li-battery materials, and catalysis. He is the recipient of an ERC Consolidator Grant 2018, ERC Starting Grant 2012, Ruzicka Preis 2013 and Werner Prize 2016. He is also a Highly Cited Researcher 2018 (by Clarivate Analytics).

Emmanuel Kymakis is Full Professor at the Electrical & Compurter Engineering Department of the Hellenic Mediterranean University, where he heads the Emerging Nanomaterials and Devices group. He received the B.Eng. (First Class Honors) degree in Electrical Engineering & Electronics from Liverpool University in 1999 and the Ph.D. degree in Electrical Engineering from Cambridge University in 2003. He and Prof. Gehan Amaratunga are the inventors of the polymer-nanotube solar cell. Before joining HMU, he was a technical consultant offering engineering and consultancy services in the field of photovoltaic and solar thermal power plants for various Greek and international investors and private companies. His technological interests are in the synthesis and solution processing of novel carbon nanomaterials and their incorporation into organic electronic devices. His research topics presently include investigation of the opto-electronic properties of graphene, carbon nanotubes, layered crystals and inorganic-organic hybrids for the development of low cost next generation flexible photovoltaic devices, compatible with roll-to-roll large area manufacturing methods. He has over 100 SCI publications with over 7.500 citations (h-index=43) on these topics and has given 40 invited lectures. He has been selected as an honorary lecturer in the UConn, and was a recipient of an Isaac Newton and an EPSRC studentship during his PhD studies in Cambridge. Prof. Kymakis was recently named by RSC as a 2014 ChemComm Emerging Investigator and has won the Excellence Award for young scientists by the Greek General Secretariat of Research & Technology. He is currently the deputy dealer of the WP Energy Generation of the Graphene Flagship and elected member of the General Assembly of the Greek Foundation for Research and Innovation (ELIDEK).
Professor Anna Köhler holds a chair of experimental physics at the University of Bayreuth. She received her PhD in 1996 from the University of Cambridge, UK, where she continued her research funded through Research Fellowships by Peterhouse and by the Royal Society. In 2003 she was appointed professor at the University of Potsdam, Germany, from where she moved in 2007 to the University of Bayreuth, Germany. Her research is concerned with photophysical processes in organic and hybrid semiconductors. She focusses in particular on the processes of energy and charge transfer in singlet and triplet excited states, the exciton dissociation mechanism and intermolecular/interchain interactions.
Philippe Leclère received a PhD in Physics from the University of Liège (Belgium) in 1994. He joined the group of Jean-Luc Brédas at the University of Mons in 1995 as a research fellow. From 2000 to 2004, he worked as research associate and served as research coordinator at the Materia Nova Research Center. During this period, he spent 4 months (in 1999) in the group of Jean-Pierre Aimé at the University of Bordeaux (France) and one year (2003) in the group of E.W. (Bert) Meijer at the Eindhoven University of Technology (TU/e) in the Netherlands. In October 2004, he became Research Associate of the Belgian National Fund for Scientific Research (FRS - FNRS) in the group of Roberto Lazzaroni at the University of Mons. In October 2014, he became Senior Research Associate of the FRS - FNRS. Since 2003, he is still visiting scientist at the Institute of Complex Molecular Systems at TU/e. His research interests mostly deal with the characterization by means of scanning probe microscopy techniques of the morphology and the nanoscale mechanical, electrical properties of organic and hybrid supramolecular (nano)structures, build by self-assembly of functional (macro)molecules. He is (co)author of over 160 chapter books and papers in international peer-reviewed journals. Hirsch Factor : 38


Wolfgang Langbein (ResearcherID B-1271-2010) was born in Würzburg, Germany, in 1968. He received his Diplom in physics from the University of Kaiserslautern in 1992, and his PhD degree in physics from the University of Karlsruhe in 1995. From 1995 to 1998, he was assistant research professor at the Mikroelektronik Centret, Denmark. From 1998 to 2004, he was with the University of Dortmund, where received his Habilitation in 2003. In 2004 he was appointed senior lecturer in the School of Physics, Cardiff University, promoted to Reader in 2006 and to Personal Chair in 2007. His current research interests are (i) characterization and ultrafast spectroscopy of semiconductor nanostructures, microcavities, and quantum-dot optical amplifiers. (ii) application of optical spectroscopy and imaging to life-science, including the techniques of coherent Raman scattering microscopy and label-free optical biosensors using microcavities or plasmonics.
Professor Kwanghee currently leads research and development program of organic solar cells in Gwangju Institute of Science and Technology (GIST) as a director of the Research Institute of Solar and Sustainable Energies (RISE). He is also appointed as a “Distinguished Professor” of the School of Materials Science and Engineering of GIST. Dr. Lee started his professorship at Pusan National University in 1997 after finishing his Ph.D. and Post-Doc at the University of California Santa Barbara (UCSB). Then he moved to GIST in 2007 and have organized and acted as a co-director of the Heeger Center for Advanced Materials (HCAM) together with the director, Professor Alan J. Heeger, who is a 2000 year Nobel Laureate in Chemistry. Now Dr. Lee is a leading scientist in the area of “plastic electronics” including organic solar cells, polymer LEDs, and organic FETs. Dr. Lee finished his B.S. in Nuclear Engineering at Seoul National University and M.S. in Physics at KAIST. Then he earned his Ph.D. in Physics at UCSB (USA) under the guidance of Prof. Heeger with a subject of metallic and semiconducting polymers.
Tae-Woo Lee is an associate professor in Materials Science and Engineering at the Seoul National University, Korea. He received his Ph.D. in Chemical Engineering from the KAIST, Korea in 2002. He joined Bell Laboratories, USA as a postdoctoral researcher and worked at Samsung Advanced Institute of Technology as (2003-2008). He was an associate professor in Materials Science and Engineering at the Pohang University of Science and Technology (POSTECH), Korea until August 2016. His research focuses on printed flexible electronics based on organic, carbon, and organic-inorganic hybrid perovskite materials for displays, solar cells, and bio-inspired neuromorphic electronics.
Marina Leite is an Associate Professor in Materials Science and Engineering at UC Davis. Her group is engaged in fundamental and applied research in hybrid perovskites for optoelectronics, functional imaging of devices through advanced scanning probe microscopy methods, and optical materials. She has delivered >130 invited talks at conferences and research institutions around the globe. Leite is the awardee of the 2016 APS Ovshinsky Sustainable Energy Fellowship from the American Physical Society (APS) and of the 2014 Maryland Academy of Sciences Outstanding Young Scientist Award. Before joining UC Davis, Leite was an Associate Professor at the University of Maryland. She also worked for two years at NIST and was a postdoctoral scholar at Caltech.
Emmanuel is an ESPCI engineer and hold a master degree from universite Pierre and marie Curie in condensed matter physics. He did his PhD under supervision of Emmanuel Rosencher on the transport properties of superlattices used as infrared detector. He then did post doc in the group of Guyot Sionnest and Dubertret, working on the optoelectronic properties of nanocrystals. Since 2015 he is a CNRS researcher at Insitute for Nanoscience at Sorbonne Université. His team is dedicated to optoelectronic of confined nanomaterials
Emmanuel Lhuillier has been undergraduate student at ESPCI in Paris and then followed a master in condensed matter physics from university Pierre and Marie Curie. He was then PhD student under the mentorship of Emmanuel Rosencher at Onera in the optics department, where he work on transport in quantum well heterostructure. As post doc he moved to the group of Philippe Guyot-Sionnest in the university of Chicago, and start working on infrared nanocrystal. Then he moved back to ESPCI for a second post in the group of Benoit Dubertret working on optoelectronic properties of colloidal nanoplatelets. Since 2015 he is a CNRS researcher at Institute for nanoscience of Paris at Sorbinne université. His research activities are focused on optoelectronic properties of confined Nanomaterial with a special interest on infrared system. He receive in 2017 an ERC starting grant to investigate infrared colloidal materials.
Yongfang Li is a professor in Institute of Chemistry, Chinese Academy of Sciences (ICCAS) and in Soochow University. He received his Ph. D. degree in department of Chemistry from Fudan University in 1986, and did his postdoctoral research at ICCAS from 1986 to 1988. He became a staff in 1988 and promoted to professor in 1993 in ICCAS, and elected as member of Chinese Academy of Sciences in 2013. He did his visiting research in Institute for Molecular Science, Japan from 1988 to 1991 and in University of California at Santa Barbara from 1997 to 1998. His present research interests are photovoltaic materials and devices for polymer solar cells. He has published more than 600 papers and the published papers were cited by others for more than 28000 times with h-index of 86.


Feng Li completed his PhD studies at Jilin University in 2003, followed by postdoctoral studies at Technion-Israel Institute of Technology. Then he returned to Jilin University in 2005 as an Associate Professor of Chemistry and promoted to full Professor in 2008. From 2017 to 2019, He was an Academic Visitor of Cavendish Laboratory, University of Cambridge. His research focuses on organic optoelectronic materials and devices based on some new concepts, for example the OLEDs in which the emission comes from doublet exciton. In 2019, He won the National Science Fund for Distinguished Young Scholars of China.
Tianquan (Tim) Lian received his PhD degree from University of Pennsylvania (under the supervision of Prof. Robin Hochstrasser) in 1993. After postdoctoral training with Prof. Charles B. Harris in the University of California at Berkeley, Tim Lian joined the faculty of chemistry department at Emory University in 1996. He was promoted to associate professor in 2002, full professor in 2005, Winship distinguished research Professor in 2007, and William Henry Emerson Professor of Chemistry in 2008. Tim Lian is a recipient of the NSF CAREER award and the Alfred P. Sloan fellowship. Tim Lian research interest is focused on ultrafast dynamics in photovoltaic and photocatalytic nanomaterials and at their interfaces.




Prof. Monica Lira-Cantu is Group Leader of the Nanostructured Materials for Photovoltaic Energy Group at the Catalan Institute of Nanoscience and Nanotechnology (www.icn.cat located in Barcelona (Spain). She obtained a Bachelor in Chemistry at the Monterrey Institute of Technology and Higher Education, ITESM Mexico (1992), obtained a Master and PhD in Materials Science at the Materials Science Institute of Barcelona (ICMAB) & Autonoma University of Barcelona (1995/1997) and completed a postdoctoral work under a contract with the company Schneider Electric/ICMAB (1998). From 1999 to 2001 she worked as Senior Staff Chemist at ExxonMobil Research & Engineering (formerly Mobil Technology Co) in New Jersey (USA) initiating a laboratory on energy related applications (fuel cells and membranes). She moved back to ICMAB in Barcelona, Spain in 2002. She received different awards/fellowships as a visiting scientist to the following laboratories: University of Oslo, Norway (2003), Riso National Laboratory, Denmark (2004/2005) and the Center for Advanced Science and Innovation, Japan (2006). In parallel to her duties as Group Leader at ICN2 (Spain), she is currently visiting scientist at the École Polytechnique Fédérale de Lausanne (EPFL, CH). Her research interests are the synthesis and application of nanostructured materials for Next-generation solar cells: Dye sensitized, hybrid, organic, all-oxide and perovskite solar cells. Monica Lira-Cantu has more than 85 published papers, 8 patents and 10 book chapters and 1 edited book (in preparation).


Professor Shengzhong (Frank) Liu received his PhD from Northwestern University in 1992. Upon completing his postdoctoral research at Argonne National Laboratory in 1994, he joined high-tech industrial research, most notably on solar cells with Solarex/BP Solar and United Solar Ovonic. His research focuses on perovskite solar cells, optoelectronic devices, single-crystalline perovskite materials, high efficiency HIT solar cells, nanoscale thin film materials and photocatalyst for photoelectrochemical water splitting. He has published more than 100 papers in peer-reviewed journals including Science, Nature, Nature Communications, Energy & Environ. Sci., Adv. Mater., Sci. Adv., Phys. Rev. X. He was recruited into the Chinese National “1000-Talent Program”in 2011 and now he is a professor at Shaanxi Normal University and Dalian Institute of Chemical Physics, Chinese Academy of Sciences.


Laura Na Liu is a full professor at the Kirchhoff Institute for Physics at University of Heidelberg, Germany. She received her Ph. D in Physics at University of Stuttgart in 2009, working on 3D complex plasmonics at optical frequencies. In 2010, she worked as postdoctoral fellow at the University of California, Berkeley. In 2011, she joined Rice University as Texas Instruments visiting professor. At the end of 2012, she obtained a Sofja Kovalevskaja Award from the Alexander von Humboldt Foundation and became an independent group leader at the Max-Planck Institute for Intelligent Systems. She joined University of Heidelberg in 2015. Her research interest is multi-disciplinary. She works at the interface between nanophotonics, biology, and chemistry. Her group focuses on developing sophisticated and smart optical nanosystems for answering structural biology questions as well as catalytic chemistry questions in local environments.
Antoni Llobet is Professor of Chemistry at the Universitat Autònoma de Barcelona (UAB) and Group Leader at Catalan Institute for Chemical Research (ICIQ) in Tarragona, Spain. He carried out his PhD at UAB on coordination chemistry of first raw transition metals. He then did one post-doct at the University of North Carolina with Thomas J. Meyer on redox properties of Ru complexes and second post-doct at Texas A&M University with Arthur E. Martell and Donald T. Sawyer on redox catalysis. He has now established a group at ICIQ that deals broadly on topics related to artificial photosynthesis with special focus on light harvesting and on oxidative and reductive catalysis. He has published over 125 research papers. In 2000 he received the Distinction Award from Generalitat de Catalunya for Young Scientists and recently he has been awarded the Bruker-Inorganic Chemistry prize of the Spanish Royal Chemical Society.
Maria Antonietta Loi studied physics at the University of Cagliari in Italy where she received the PhD in 2001. In the same year she joined the Linz Institute for Organic Solar cells, of the University of Linz, Austria as a post doctoral fellow. Later she worked as researcher at the Institute for Nanostructured Materials of the Italian National Research Council in Bologna Italy. In 2006 she became assistant professor and Rosalind Franklin Fellow at the Zernike Institute for Advanced Materials of the University of Groningen, The Netherlands. She is now full professor in the same institution and chair of the Photophysics and OptoElectronics group. She has published more than 130 peer review articles in photophysics and optoelectronics of nanomaterials. In 2012 she has received an ERC starting grant.


Bettina Lotsch is the Director of the Nanochemistry Department at the Max Planck Institute for Solid State Research (MPI-FKF) in Stuttgart, Germany. She studied Chemistry at the Ludwig-Maximilians-Universität München (LMU) and the University of Oxford and received her PhD from LMU Munich in 2006. After a postdoctoral stay at the University of Toronto she became professor at LMU Munich in 2009 and was appointed Director at MPI-FKF in 2017. Bettina also holds honorary professorships at LMU Munich and the University of Stuttgart, and is PI of the Munich-based Cluster of Excellence e-conversion.
Bettina’s research explores the rational synthesis of new materials by combining the tools of molecular, solid-state and nanochemistry. Current research interests include molecular frameworks for solar energy conversion and storage, solid electrolytes for all-solid-state batteries, and “smart” photonic crystals for optical sensing.
Bettina was awarded an ERC Starting Grant (2014) and has been elected a Fellow of the Royal Society of Chemistry in 2014. Her work has been recognized by a number of awards, including the EU-40 Materials Prize 2017 of the European Materials Research Society.




Dr. Eric Lukosi received hi PhD in Nuclear Engineering in 2012 from the University of Missouri. He is currently an Associate Professor in the Nuclear Engineering Department at the University of Tennessee and is affiliated with the Joint Institute for Advanced Materials. Dr. Lukosi's expertise is in radiation sensor development and application in fields ranging from high energy physics to nuclear security. Dr. Lukosi specializes in the development of semiconductor detectors, such as lithium indium diselenide, diamond, and methylammonium lead tribromide.

Joseph M. Luther obtained B.S. degrees in Electrical and Computer Engineering from North Carolina State University in 2001. At NCSU he began his research career under the direction of Salah Bedair, who was the first to fabricate a tandem junction solar cell. Luther worked on growth and characterization high-efficiency III-V materials including GaN and GaAsN. His interest in photovoltaics sent him to the National Renewable Energy Laboratory (NREL) to pursue graduate work. He obtained a Masters of Science in Electrical Engineering from the University of Colorado while researching effects of defects in bulk semiconductors in NREL�s Measurements and Characterization Division. In 2005, He joined Art Nozik�s group at NREL and studied semiconductor nanocrystals for multiple exciton generation for which he was awarded a Ph.D. in Physics from Colorado School of Mines. As a postdoctoral fellow, he studied fundamental synthesis and novel properties of nanomaterials under the direction Paul Alivisatos at the University of California and Lawrence Berkeley National Laboratory. In 2009, he rejoined NREL as a senior research scientist. His research interests lie in the growth, electronic coupling and optical properties of colloidal nanocrystals and quantum dots.


I am a research officer based in the Centre for Innovative Ageing (CIA) and I am currently working on the Active Building Centre (ABC) project. This project aims to combine solar and low/zero carbon technologies with building design and operation to transform the construction and energy sectors. Our centre is involved with the ABC project to examine the impact of Active Builds on older people. We want to understand older people’s motives and the decision-making processes around moving to an ‘active’ home. I am particularly interested in public involvement and engagement in the research process and this is central to our research. We will be working with older people to devise and conduct the research. I retain an active role in the SUNRISE project (Strategic University Network to Revolutionize International Solar Energy and was involved in piloting arts based approaches to involvement and engagement in India (this blog has further details) as part of my role within the Centre for Ageing and Dementia Research (CADR) Cymru. I have also recently been awarded my PhD on the role of social support networks in the dementia literacy of older adults in Wales.
Morten Madsen, Professor wsr at the University of Southern Denmark, SDU NanoSYD. His main research focus on electronic and optoelectronic devices based on semiconducting thin-films. Conducted a postdoc fellowship at Prof. Ali Javey lab, UC Berkeley, and started in 2011 the OPV group at SDU NanoSYD. Is also heading the SDU Roll-to-Roll facility that focus on complete up-scaling of organic photovoltaics. Holds around 60 peer-reviewed publications on these topics, including publications in Nature, Nature Energy, Energy & Environ. Sci., Nano Letters, Advanced Materials, etc. Is an editor on the book ‘Devices from Hybrid and Organic Materials’ part of the 'World Scientific Reference of Hybrid Materials' 2019 book series. Coordinator and PI of the FP7 ITN Marie Curie project THINFACE, which stands out as a very successful Marie Curie ITN training network with a high number of peer-reviewed publications per early stage researcher. Committee member of the PhD school board at the TEK faculty, SDU, and currently PI on the EU Interreg 5A project RollFlex, focused on roll-to-roll (R2R) printing of organic solar cells, and on several national research projects (DFF FTP and Villum Foundation).
Wouter Maes got his PhD in Chemistry with Professor Wim Dehaen at the Katholieke Universiteit (KU) Leuven (Belgium) in 2005. After post-doctoral stays at the KU Leuven (postdoc of the Research Foundation – Flanders, FWO; with Professor Wim Dehaen), the Université Pierre et Marie Curie, Paris (with Professor Eric Rose) and Oxford University (with Professor Harry Anderson), he became Assistant Professor at Hasselt University in 2009, where he was promoted to Associate Professor in 2014 and Professor (Hoogleraar) in 2018. His research activities deal with the design and synthesis of organic semiconducting materials (with an emphasis on conjugated polymers) and their application in organic electronic devices (organic solar cells, photodetectors, transistors, light-emitting diodes) and advanced healthcare, pursuing rational structure-property relations (see https://www.uhasselt.be/DSOS). These activities are generally combined with more in-depth material and device physics studies within the framework of the Institute for Materials Research (IMO-IMOMEC) of Hasselt University.
Benoit Mahler is a CNRS researcher at the ILM (Light and Matter Institute) in Lyon (France). His research interests include the colloidal synthesis of semiconductor nanostructures and heterostructures, the growth of two-dimensional materials and their applications for light harvesting applications.




Thomas E. Mallouk received his bachelor’s degree from Brown University and was a Ph.D. student with Neil Bartlett at the University of California, Berkeley. Following postdoctoral work with Mark Wrighton at MIT he held faculty positions at the University of Texas at Austin and at Penn State University. He is currently Vagelos Professor in Energy Research in the Department of Chemistry at the University of Pennsylvania. His research focuses on the synthesis of inorganic materials and their application to solar energy conversion, energy storage, catalysis and electrocatalysis, nano- and microscale motors, low dimensional physical phenomena, and environmental remediation. He is the author of 450+ publications, including a few good ones. He is a member of the U.S. National Academy of Sciences and the American Academy of Arts and Sciences, and a Fellow of the American Chemical Society.


Manju Reddy is a faculty member at the Chemistry Department, University of Lille, France. He received his PhD from Aix-Marseille University, France. Subsequently, he has been a postdoctoral researcher at high-field NMR spectroscopy laboratory at University of Warwick with Professor Steven Brown, and a research associate at Chemical Engineering and Center for Polymers and Organic Solids at University of California Santa Barbara with Professors Brad Chmelka, Gui Bazan, and Thuc-Quyen Nguyen. He has been a recipient on behalf of EU H2020 the Marie Skłodowska-Curie Individual Fellow Award in 2017, and a Chemical Society of France PhD Thesis Award in 2012. He has been acquired by the Royal Society of Chemistry as Member (2016).
He established a research group at University of Lille with a focus on understanding structure-processing-property relationships in materials for energy and environmental applications. In particular, his group is interested in applying in situ and ex situ solid-state NMR spectroscopy at high magnetic fields to characterize short-range structures and dynamics in organic semiconductors, hybrid perovskites, and functional supramolecular materials. He is an Editorial board member of Frontiers in Chemistry and Frontiers in Physics.
Bio Professional Preparation M.S. in Chemistry, with Honours, University of Bari, Italy, 1996 Ph.D. in Chemistry, University of Bari, Italy, 2001 Research interests Prof. L. Manna is an expert of synthesis and assembly of colloidal nanocrystals. His research interests span the advanced synthesis, structural characterization and assembly of inorganic nanostructures for applications in energy-related areas, in photonics, electronics and biology.
Seth R. Marder obtained his Ph.D. from the University of Wisconsin-Madison in 1985. He completed his postdoctoral research at the University of Oxford and at the Jet Propulsion Laboratory California Institute of Technology. He joined the Georgia Institute of Technology in 2003 where he is currently a Regents’ Professor of Chemistry and Materials Science and Engineering (courtesy) and the Georgia Power Chair in Energy Efficiency. His research interests are in the development of materials for nonlinear optics, applications of organic dyes for photonic, display, electronic and medical applications, and organometallic chemistry.


Eduardo C Marino graduated as a Bachelor in Physics in 1975. He has got a MSc and a PhD degrees, respectively in 1978 and 1980, both in Quantum Field Theory (QFT). He was a Post-Doctoral Fellow at Harvard University, from 1981 to 1983. By this time he became interested in applicatiions of QFT in Condensed Matter Physics (CMP) and, subsequently, introduced this new area of research in Brazil. He was a visiting Professor at Princeton Universty from 1991 to 1993 and again from 2007 to 2008. He was awarded the State Academic Prize for students graduating in the year of 1975 with the 10 best academic records in all areas of knowledge. In 2000 he became an elected member of the Brazilian National Academy of Sciences. In 2005 he was awarded the National Order of Scientific Merit by the President of Brazil. He has been invited to deliver talks in International Conferences, as well as colloquia and seminars in more than 15 countries. He is Profesor of Physics at the Federal University of Rio de Janeiro, since 1994 and his research interests are still in applications of QFT to CMP, more specifically in graphene, Transition Metal Dichalcogenides, High-Tc Superconductivity, Topological Insulators, Weyl semi-metals, Topological Quantum Computation, Topological effects in CMP, among other subjects.
Dr. Roland Marschall obtained his PhD in Physical Chemistry from the Leibniz University Hannover in 2008, working on mesoporous materials for fuel cell applications. After a one year postdoctoral research at the University of Queensland in the ARC Centre of Excellence for Functional Nanomaterials, he joined in 2010 the Fraunhofer Institute for Silicate Research ISC as project leader. In 2011, he joined the Industrial Chemistry Laboratory at Ruhr-University Bochum as young researcher. From 07/2013 to 08/2018, he was Emmy-Noether Young Investigator at the Justus-Liebig-University Giessen. Since 08/2018, he is FUll Professor at the University of Bayreuth, Germany. His current research interests are heterogeneous photocatalysis, especially photocatalytic water splitting using semiconductor mixed oxides, and synthesis of oxidic mesostructured materials for energy applications.


Juan P. Martínez-Pastor, Full Prof. at the University of Valencia. PhD in Physics, 1990. Three years of postdoctoral experience at the European Laboratory of Non-Linear Spectroscopy (Florence, Italy) and at the École Normale Supérieure (Paris, France). Prof. Martínez-Pastor is expert in Semiconductor Physics, particularly optical properties and exciton recombination dynamics in quantum wells, wires and dots based on III-V semiconductors and other compounds since 1990. This research line continues nowadays focused on quantum light produced by quantum dot semiconductors and its management for quantum communications. After 2006 he has leaded/co-leaded several research lines in nanoscience and nanotechnology regarding the development of several types of nanomaterials (metal and quantum dots, multi-functional nanocomposites) and applications to photonics and plasmonics. In the last three years, he focuses his research in optical properties, exciton recombination dynamics and applications in photonics of two-dimensional semiconductors and metal halide perovskites. He has supervised 15 PhD theses and is author/co-author of 220 peer-reviewed publications with more than 5200 citations (Google Scholar), other than 7 patents and promotor of a spin-off company.


-2005, Ph.D LIOS (Linz institute for organic solarcells), J. Kepler University,Linz, Austria. Head: Prof. N.S. Sariciftci 2006-10, Post-doc, Institute for Semiconductor and Solid-State Physics, J. Kepler University, Austria, Head: Prof. G. Bauer 2011- Senior researcher, I-Meet, Erlangen, Germany. Head. Prof. C.J. Brabec.
Matthias May studied physics in Stuttgart, Grenoble, and Berlin, with a focus on condensed matter and computational physics. In his diploma thesis (2010), he investigated charge-density wave phase transitions using photoelectron spectroscopy. For his PhD studies at Humboldt-Universität zu Berlin and Helmholtz-Zentrum Berlin on III-V semiconductors for solar water splitting, he won a scholarship of Studienstiftung des deutschen Volkes. He received his PhD end of 2014 and worked in his first postdoctoral position on high-efficiency water splitting. From 2016 to 2018, he was postdoctoral fellow at the Chemistry Department of the University of Cambridge, funded by the German Academy of Sciences Leopoldina, modelling optical properties of solid-liquid interfaces. His main scientific interests lie in the area of highly correlated electron systems and semiconductor-interfaces, both from an experimental and modelling perspective.
Matthew T. Mayer is presently leader of a Helmholtz Young Investigator Group at Helmholtz-Zentrum Berlin, studying electrochemical and photoelectrochemical conversion of carbon dioxide. He earned his Ph.D. in chemistry from Boston College, and performed postdoctoral studies at the Ecole polytechnique fédérale de Lausanne (EPFL) in the Laboratory of Photonics and Interfaces.
Iain McCulloch holds positions as Professor of Chemical Science within the Division of Physical Sciences and Engineering of KAUST, and a Chair in Polymer Materials within the Chemistry Department at Imperial College. He is also a co-founder and director of Flexink Limited. He is co-inventor on over 60 patents and co-author on over 300 papers with a current h-index of 68. His papers have been cited over 19000 times, including two papers with over 1000 citations. He was cited in Thompson Reuters “Global Top 100 Materials Scientists, 2000-10, Ranked by Citation Impact” at number 35 globally and number 2 in the UK, and was listed on ISI Highly Cited Researchers List 2014, based on ESI Highly Cited Papers 2002-2012. He was awarded the 2009 Royal Society of Chemistry, Creativity in Industry Prize, the 2014 Royal Society of Chemistry Tilden Prize for Advances in Chemistry and a 2014 Royal Society Wolfson Merit Award.
Iain McCulloch holds positions as Professor of Chemical Science within the Division of Physical Sciences and Engineering of KAUST, and a Chair in Polymer Materials within the Chemistry Department at Imperial College. He is also a co-founder and director of Flexink Limited. He is co-inventor on over 60 patents and co-author on over 300 papers with a current h-index of 68. His papers have been cited over 19000 times, including two papers with over 1000 citations. He was cited in Thompson Reuters “Global Top 100 Materials Scientists, 2000-10, Ranked by Citation Impact” at number 35 globally and number 2 in the UK, and was listed on ISI Highly Cited Researchers List 2014, based on ESI Highly Cited Papers 2002-2012. He was awarded the 2009 Royal Society of Chemistry, Creativity in Industry Prize, the 2014 Royal Society of Chemistry Tilden Prize for Advances in Chemistry and a 2014 Royal Society Wolfson Merit Award.
Matthew McDowell is an assistant professor at Georgia Tech with appointments in the G. W. Woodruff School of Mechanical Engineering and the School of Materials Science and Engineering. He received his Ph.D. from Stanford University in 2013 and was a postdoc at Caltech from 2013 until 2015. His research group focuses on understanding how materials transform inside energy storage devices and using this knowledge to improve their performance. McDowell has received numerous awards, including the Presidential Early Career Award for Scientists and Engineers (PECASE), Sloan Fellowship, NSF CAREER Award, AFOSR Young Investigator Award, and the NASA Early Career Faculty Award.
Michael D. McGehee is a Professor in the Chemical and Biological Engineering Department at the University of Colorado Boulder. He is the Associate Director of the Materials Science and Engineering Program and has a joint appointment at the National Renewable Energy Lab. He was a professor in the Materials Science and Engineering Department at Stanford University for 18 years and a Senior Fellow of the Precourt Institute for Energy. His current research interests are developing new materials for smart windows and solar cells. He has previously done research on polymer lasers, light-emitting diodes and transistors as well as transparent electrodes made from carbon nanotubes and silver nanowires. His group makes materials and devices, performs a wide variety of characterization techniques, models devices and assesses long-term stability. He received his undergraduate degree in physics from Princeton University and his PhD degree in Materials Science from the University of California at Santa Barbara.


Simone Meloni is researcher at the Department of Chemistry and Pharmaceutilcal Sciences at the University of Ferrara. He works on applications of computational atomistic simulation to fundamental and technological problems, especially related to the energy technologies: solar energy, energy scavenging, etc. He developed special techniques for chemical reactions and non-equilibrium problems.
Professor Adélio Mendes (born 1964) received his PhD degree from the University of Porto in 1993.
Full Professor at the Department of Chemical Engineering of the Faculty of Engineering of the University of Porto. Coordinates a large research team with research interests mainly in dye sensitized solar cells and perovskite solar cells, photoelectrochemical cells including water splitting and solar redox flow batteries, photocatalysis, redox flow batteries, electrochemical membrane reactors (PEMFC, H-SOFC, chemical synthesis), methanol steam reforming, membrane and adsorbent-based gas separations and carbon molecular sieve membranes synthesis and characterization.
Professor Mendes authored or co-authored more than 300 articles in peer-review international journals, filled 23 families of patents and is the author of a textbook; received an Advanced Research Grant from the ERC on dye-sensitized solar cells for building integrated of ca. 2 MEuros and since 2013 he is partner in 4 more EU projects and leads one EU project. Presently he is the leader of a FET Open project, GOTSolar, on perovskite solar cells. He received the Air Products Faculty Excellence 2011 Award (USA) for developments in gas separation and Solvay & Hovione Innovation Challenge 2011 prize, the Prize of Coimbra University of 2016, and the prize of Technology Innovation - 2017 by the University of Porto. Presently, he is the Coordinator of CEner-FEUP, the Competence Center for Energy of the Faculty of Engineering at the University of Porto.


Rene is in his 2nd year of PhD (2021) working on ways to avoid water and soil pollution by lead (Pb2+) present in perovskite solar cells in ways that do not hinder their photovoltaic performance.
Rene works in coordination with local industry (3GSolar Photovoltaics, https://www.3gsolar.com/ ) for performance of perovskite solar cells under indoor light illumination, in a strategy for replacing batteries for the internet of things (funded by the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 764787. https://maestro-itn.eu/)
Research interests:
Safe managing of perovskite solar cells
2D-perovskites
Organic photovoltaics
Organic semiconductors
Education:
Bachelor in Chemistry 2009-2014 (specialized on organic and analytical chemistry) at Autonomous University of Coahuila (Mexico) http://www.uadec.mx/quimicas/
Bachelor thesis 2013-2014 Conjugated polymers based with triple bonds for organic solar cells. Applied Chemistry Research Center (CIQA) https://www.ciqa.mx/
Master in Science 2015-2018 (Organic and Molecular Electronics) at Technical University of Dresden (Germany) https://tu-dresden.de/mn/physik/studium/master-organische-und-molekulare-elektronik?set_language=en
Master thesis 2017-2018 Conjugated polymers based on diketopyrrolopyrrole for Organic Field Effect Transistors (OFETs) Leibniz-Institute for Polymer Research, Germany. https://www.ipfdd.de/en/about-us/
Publications:
“Copolymers of Diketopyrrolopyrrole and Benzothiadiazole: Design and Function from Simulations with Experimental Support” Raychev D., Mendez Lopez R.D., Kiriy A., Seifert G., Sommer J., Guskova O. Macromolecules 2019, 52, 3, 904-914. DOI: 10.1021/acs.macromol.8b02500
Nicolas Mercier (Ph.D. in inorganic chemistry, 1994 -Le Mans-) is Professor at the University of Angers (France). His major interests is the synthesis, crystallography, and structure−property relationships of organic-inorganic materials including coordination complexes/polymers and hybrid perovskites (HP). He started working in the field of HP in 2002, showing the key role of organic cations to tune the band gap of 2D HPs and the potential of such hybrids in the field of SHG switchable materials and in the field of ferroelectrics. Recently, he has discovered a new family of lead and iodide deficient hybrid perovskites (3D d-HP) for PSC and PeLED applications.
Professor Meredith is professor of materials physics at the University of Queensland in Brisbane, Australia. He is currently an Australian Research Council Discovery Outstanding Research Award Fellow, co-director of the Centre for Organic Photonics and Electronics, and Director of the UQ Solar Initiative. His research involves the development of new sustainable high-tech materials for applications such as solar energy and bioelectronics, and he particularly specialises in the transport physics and electro-optics of disordered semiconductors. Professor Meredith is also the co-founder of several start-up companies including XeroCoat and Brisbane Materials Technology. He is the recipient of numerous awards including the Premier of Queensland’s Sustainability Award (2013) and is widely recognised for his contributions to innovation and the promotion of renewable energy in Australia. He serves on several advisory boards including the Premier of Queensland’s Climate Change Council, the Australian Solar Thermal Research Initiative Strategic Advisory Board, and the Australian Renewable Energy Agency Technical Advisory Board. He originally hails from South Wales, was educated at Swansea University and Heriot-Watt University, and was DTI Postdoctoral Fellow at the Cavendish Laboratory in Cambridge before spending 6 years as an industrial scientist with Proctor and Gamble.


Subodh Mhaisalkar is the Tan Chin Tuan Centennial Professor in the School of Materials Science & Engineering at the Nanyang Technological University (NTU), Singapore. Subodh is also the Executive Director of the Energy Research Institute @ NTU (ERI@N), a pan-University multidisciplinary research institute for innovative energy solutions. Prior to joining NTU in 2001, Subodh has over 10 years of research and engineering experience in the microelectronics industry and his areas of expertise and research interests includes semiconductor technology, perovskite solar cells, printed electronics, and energy storage. Subodh received his Bachelors’ degree from IIT-Bombay and his MS/Ph.D. degrees from The Ohio State University.


Dr. Jovana V. Milić is a Group Leader at the Adolphe Merkle Institute of the University of Fribourg in Switzerland. She obtained her PhD in the Department of Chemistry and Applied Biosciences at ETH Zurich in July 2017. Since October 2017, she works as a scientist with Prof. Michael Graetzel in the Laboratory for Photonics and Interfaces at EPFL on the development of novel photovoltaic materials, with the focus on dye-sensitized and hybrid perovskite solar cells. Her research interests encompass (supra)molecular engineering of bioinspired organic materials with the aim of developing functional nanotechnologies. For more information, refer to her LinkedIn profile (linkedin.com/in/jovanavmilic), ORCID 0000-0002-9965-3460, and Twitter (@jovana_v_milic).


Dr Laura Miranda Perez is the Head of Materials Research and Characterisation at Oxford PV, a spin-out of Oxford University that is commercialising perovskites for photovoltaic applications. Laura has a strong background in materials synthesis and characterisation. Prior to joining Oxford PV she was a fellow at the University of Oxford, where her work focused on perovskites and carbon materials. Before this, Laura held a fellowship in perovskite thin film materials at the College du France in Paris. Laura undertook her PhD in Madrid, Spain and Sheffield, UK, in the screening of new families of hexagonal perovskite materials.
Katherine was born and raised in Eastern Ukraine, and moved with her family to the state of Rhode Island during her freshman year in high school. She attended Boston College, where she developed a passion for Materials Chemistry, working in the laboratory of Lawrence T. Scott. She graduated with high honors in 2004, and later that year moved across the river to pursue graduate studies at Harvard University. In 2011, Katherine earned her Ph.D. in Chemistry from Harvard University under the guidance of George M. Whitesides. Her doctoral dissertation focused on the development and characterization of a simple and portable method that used magnetic levitation for density-based chemical analysis. She also contributed to several other research efforts in the areas of paper-based diagnostics and protein biophysics. Katherine then joined the laboratory of Timothy M. Swager at the Massachusetts Institute of Technology as an NIH postdoctoral fellow to pursue the development of portable electronic carbon-based chemical sensors for the detection of hazardous gases and vapors. At MIT, she developed a solvent-free approach, operationally analogous to drawing with pencil on paper, for the fabrication of sensitive and selective sensors from carbon nanomaterials. Katherine began her independent scientific career as an Assistant Professor in the Department of Chemistry at Dartmouth College in July 2015. She is a recipient of the Army Research Office Young Investigator Award (2017), Sloan Research Fellowship (2018), 3M Non-Tenured Faculty Award (2018-2019), and Cottrell Scholars Award (2019).


David Mitzi received a B.S.E. in Electrical Engineering from Princeton University in 1985 and a Ph.D. in Applied Physics from Stanford University in 1990. In 1990, he joined the IBM T. J. Watson Research Center and initiated a program examining structure-property relationships, low-cost thin-film deposition techniques and device applications for a variety of electronic materials (e.g., oxides, halides, chalcogenides, organic-inorganic hybrids). Between 2009 and 2014 he managed the Photovoltaic Science and Technology department at IBM, with a focus on developing solution-processed high-performance inorganic semiconductors for thin-film photovoltaic (PV) devices. In July 2015, Dr. Mitzi moved to the Department of Mechanical Engineering and Materials Science at Duke University as a professor. He holds a number of patents and has authored or coauthored more than 180 papers and book chapters.
Tsutomu (Tom) Miyasaka received his Doctor of Engineering from The University of Tokyo in 1981. He joined Fuji Photo Film, Co., conducting R&Ds on high sensitivity photographic materials, lithium-ion secondary batteries, and design of an artificial photoreceptor, all of which relate to electrochemistry and photochemistry. In 2001, he moved to Toin University of Yokohama (TUY), Japan, as professor in Graduate School of Engineering to continue photoelectrochemistry. In 2006 to 2009 he was the dean of the Graduate School. In 2004 he has established a TUY-based company, Peccell Technologies, serving as CEO. In 2005 to 2010 he served as a guest professor at The University of Tokyo.
His research has been focused to light to electric energy conversion involving photochemical processes by enhancing rectified charge transfer at photo-functional interfaces of semiconductor electrodes. He has contributed to the design of low-temperature solution-printing process for fabrication of dye-sensitized solar cells and hybrid photovoltaic (PV) cells. Since the discovery of the organic inorganic hybrid perovskite as PV material in 2006 his research has moved to R&Ds of the lead halide and lead-free perovskite PV devices and promoted the research field of perovskite photovoltaics by enhancement of PV efficiency and durability, overall citation number of which is reaching more than 25,000 times. In 2017 he was awarded a Citation Laureate of Clativate Analytics, and received Chemical Society of Japan (CSJ) Award. He is presently directing national research projects funded by Japan Science and Technology Agency (JST) and Japan Aerospace Exploration Agency (JAXA).
We are a multidisciplinary and collaborative research team with the overarching goal to establish structure-function relationships by understanding and advancing the fundamental knowledge rooted in the physics, chemistry and engineering of next generation materials for optoelectronics, sustainable, energy conversion, quantum computing, sensing and environmental preservation. Our philosophy is to develop creative and out-of-the-box approaches to solve fundamental scientific problems and apply this knowledge to demonstrate technologically relevant performance in devices.


Professor in Materials Physics at Karlstad University, Sweden. Research area: morphology of conjugated polymer thin films and molecular self-organisation. Previously employed as Research Scientist at Cambridge Display Technology in Cambridge,UK, and as Research Assistant at University of Cambridge. Post-doc research related to dye-sensitized solar cells at EPFL Lausanne and TU Delft. PhD. from the Weizmann Institute of Science in Rehovot, Israel.
Iván Mora-Seró (1974, M. Sc. Physics 1997, Ph. D. Physics 2004) is researcher at Universitat Jaume I de Castelló (Spain). His research during the Ph.D. at Universitat de València (Spain) was centered in the crystal growth of semiconductors II-VI with narrow gap. On February 2002 he joined the University Jaume I. From this date until nowadays his research work has been developed in: electronic transport in nanostructured devices, photovoltaics, photocatalysis, making both experimental and theoretical work. Currently he is associate professor at University Jaume I and he is Principal Researcher (Research Division F4) of the Institute of Advanced Materials (INAM). Recent research activity was focused on new concepts for photovoltaic conversion and light emission based on nanoscaled devices and semiconductor materials following two mean lines: quantum dot solar cells with especial attention to sensitized devices and lead halide perovskite solar cells and LEDs, been this last line probably the current hottest topic in the development of new solar cells.
I obtained my PhD degree in applied physics at Ghent University in 2009, studying near-infrared lead salt quantum dots. This was followed by a postdoc on quantum dot emission dynamics at Ghent University in collaboration with the IBM Zurich research lab. In 2012 I joined the Istituto Italiano di Tecnologia, where I led the Nanocrystal Photonics Lab in the Nanochemistry Department. In 2017 I returned to Ghent University as associate professor, focusing mostly on 2D and strained nanocrystals. The research in our group ranges from the synthesis of novel fluorescent nanocrystals to optical spectroscopy and photonic applications.
Shigehiko Mori belongs to Toshiba Corporate Research & Development Center. He finished the doctoral program without a doctoral degree of Nihon University in 2008. He joined Toshiba Corporate Research & Development Center in 2008 and engaged in the development and research of plasmonic waveguide and near-field photolithography from 2008 to 2011. Then he engaged in the development and research of organic photovoltaics from 2011 to 2015. From 2015 to present, his work focuses on the development and research of perovskite solar cells. His current research interests are perovskite solar cells, film-based optoelectronic devices.


Victor Mougel has been a tenure track assistant professor of Inorganic Chemistry in the Department of Chemistry and Applied Biosciences at ETH Zürich since December 2018. He completed his Bachelor’s and Master’s degree in Chemistry at the ENS of Lyon, and carried out his PhD at the University of Grenoble under the supervision of Prof. Marinella Mazzanti. He then joined ETH Zürich as an ETH Fellow before starting his independent career as a CNRS associate researcher at Collège de France in Paris in 2016. His present scientific focus is on the electrochemical activation of small molecules notably following a bio-inspired approach. An ultimate goal of his research group is to establish a practical system for the electroreduction of N2 to ammonia inspired by the nitrogenase enzyme, for which he recently received support via an ERC starting grant.


Karen Mulfort is a Chemist in the Solar Energy Conversion Group at Argonne National Laboratory in the USA. She earned her B.S. in Chemistry from the University of Minnesota in 2001 and Ph.D. from Northwestern University in 2008, followed by a Director's Postdoctoral Fellowship at Argonne. Karen was promoted to Assistant Chemist in the Division of Chemical Sciences and Engineering at Argonne in 2010 and Chemist in 2015. Her current research program investigates molecular and supramolecular architectures in systems for artificial photosynthesis. Karen and her work have been recognized with a 2009 Young Investigator Award from the Inorganic division of the American Chemical Society, the 2018 Rising Star Award from the Women Chemists Committee of the American Chemical Society, and the 2018 Early Career Research Program from the U.S. Department of Energy.
I am Professor of Microbiology at Queen Mary, University of London, UK. My research interests are on the cell biology of cyanobacteria, including photosynthesis, membrane biogenesis, light perception and signal transduction, motility and multicellularity.
Hernán Míguez (born in Buenos Aires, Argentina, 1971) is Research Professor of the Spanish Research Council (CSIC) in the Institute of Materials Science of Seville. He studied Physics in the Universidad Autónoma de Madrid and did his PhD in the Institute of Materials Science of Madrid. After a postdoctoral stay at the University of Toronto in the group of Prof. Ozin, he returned to Spain and joined the CSIC in 2004. He leads the group of Multifunctional Optical Materials, whose activities are devoted to the development, characterization and modeling of new photonic architectures for applications in different fields, among them solar energy conversion and light emission. He has received an ERC starting grant (2012, Consolidator Modality) and the “Real Sociedad Española de Física-Fundación BBVA 2017” Prize in the modality of “Physics, Innovation and Technology”.






Co founded Gram Oorja Solutions in 2008. We are a renewable energy company that focuses on energy access in remote rural communities in India. We have recently started projects in Africa and aim to be in parts of South Asia soon.
Prior to Gram Oorja, I have worked in Banking and Software industries for 15 years
Dr. Md. K. Nazeeruddin received M.Sc. and Ph. D. in inorganic chemistry from Osmania University, Hyderabad, India. His current research focuses on Dye-sensitized solar cells, Hydrogen production, Light-emitting diodes and Chemical sensors. He has published more than 400 peer-reviewed papers, nine book chapters, and inventor of 49 patents. The high impact of his work has been recognized with invitations to speak at over 100 international conferences. He appeared in the ISI listing of most cited chemists, and has more than 10000 citations with an h-index of 93. He is directing, and managing several industrial, national, and European Union projects on Hydrogen energy, Photovoltaics (DSC), and Organic Light Emitting Diodes. He was awarded EPFL Excellence prize in 1998 and 2006, Brazilian FAPESP Fellowship in 1999, Japanese Government Science & Technology Agency Fellowship, in 1998, Government of India National Fellowship in 1987-1988. Recently he has been appointed as World Class University (WCU) professor for the period of March 1, 2009 ~ December 31, 2012 by the Korea University, Jochiwon, Korea.
Nate Neale received his B.A. degree in chemistry from Middlebury College in 1998, where he studied radical substitution reactions at activated arenes and the binding mode of cisplatin, a common commercial anti-cancer drug, to a model DNA fragment. His scientific training continued as a graduate student under Prof. T. Don Tilley at the University of California, Berkeley, investigating the mechanism by which a transition-metal catalyst facilitates the polymerization of stannanes to polystannanes, a class of inorganic polymers with unique optical and electronic properties. As a postdoctoral researcher at NREL, he worked on controlling the synthesis and surface chemistry of TiO2 nanostructures for dye-sensitized solar cells in the laboratories of Dr. Arthur J. Frank. After a brief stint at the University of Colorado, Boulder, during which time he worked in collaboration with Dr. Frank, Dr. Arthur J. Nozik, and Prof. David Jonas on photoelectrodes for photoelectrochemical water splitting, he returned to NREL as a staff scientist in 2008. His current research interests are focused on tailoring the chemical structure and photophysics of nanostructured inorganic semiconductors and catalysts for photovoltaics, solar fuels, batteries, and related energy conversion and storage concepts.
.....
Prof. Dieter Neher studied physics at the University of Mainz. In 1990 he gained his PhD with Prof. G. Wegner. From 1990-1992 he was a research associate at the Optical Sciences Centre, Tucson, Arizona and at the Centre for Research in Electrooptics and Lasers, Orlando, Florida with Prof. G. Stegeman. 1992 he joined again Prof. G. Wegner at the MPI-P, heading the group Electrooptical Phenomena in Polymers. Following his habilitation in November 1998, he became Professor of Soft Matter Physics at the Institute for Physics and Astronomy at the University of Potsdam. Current research interests are electrical, optical and optoelectronic processes in conjugated materials.
Jenny Nelson is a Professor of Physics at Imperial College London, where she has researched novel varieties of material for use in solar cells since 1989. Her current research is focussed on understanding the properties of molecular semiconductor materials and their application to organic solar cells. This work combines fundamental electrical, spectroscopic and structural studies of molecular electronic materials with numerical modelling and device studies, with the aim of optimising the performance of plastic solar cells. She has published around 200 articles in peer reviewed journals, several book chapters and a book on the physics of solar cells.


Martin Neukom studied System Engineering at the Zurich University of Applied Sciences, Switzerland. After a research experience at its Institute of Computational Physics, he joined the spin-off company Fluxim which develops and distributes the simulation software setfos. He is experienced in numerical simulation and transient electrical characterization of organic solar cells. Currently he is a student in the photovoltaics master program at Albert-Ludwigs University Freiburg, Germany. Beside that he is politically engaged as Member of Parliament in the canton of Zurich.
Thuc-Quyen Nguyen is a professor in the Center for Polymers and Organic Solids and the Chemistry & Biochemistry Department at University of California, Santa Barbara (UCSB). She received her Ph.D. degree in physical chemistry from the University of California, Los Angeles, in 2001 under the supervision of Professor Benjamin Schwartz. Her thesis focused on photophysics of conducting polymers. She was a research associate in the Department of Chemistry and the Nanocenter at Columbia University working with Professors Louis Brus and Colin Nuckolls on molecular self-assembly, nanoscale characterization and molecular electronics. She also spent time at IBM Research Center at T. J. Watson (Yorktown Heights, NY) working with Richard Martel and Phaedon Avouris. Her current research interests are structure-function-property relationships in organic semiconductors, electronic properties of conjugated polyelectrolytes, interfaces in optoelectronic devices, charge transport in organic semiconductors and biological systems, and device physics. Recognition for her research includes the 2005 Office of Naval Research Young Investigator Award, the 2006 NSF CAREER Award, the 2007 Harold Plous Award, the 2008 Camille Dreyfus Teacher Scholar Award, the 2009 Alfred Sloan Research Fellows, the 2010 National Science Foundation American Competitiveness and Innovation Fellows, the 2015 Alexander von Humboldt Senior Research Award, the 2016 Fellow of the Royal Society of Chemistry, the 2015-2019 World’s Most InfluentialScientific Minds; Top 1% Highly Cited Researchers in Materials Science by Thomson Reuters and Clarivate Analytics, and the 2019 Fellow of the American Association for the Advancement of Science (AAAS). Her current research interests are electronic properties of conjugated polyelectrolytes, doping in organic semiconductors, charge transport in organic semiconductors and biofilms, bioelectronics, and device physics of organic solar cells, ratchets, transistors, and photodetectors.
Anders Nilsson received a PhD in physics at Uppsala University, Sweden (1989) in the laboratory created by Kai Siegbahn. He is a professor in Chemical Physics at Stockholm University and visiting professor in Chemical Engineering at Stanford University. He received the Lindbomska Award at the Swedish Royal Academy of Science, the Royal Oscar Award at Uppsala University in 1994, the Shirley Award in Berkeley 1998, the Humboldt Award for senior scientist in 2010 and was awarded honorable doctor at Denmarks Technical University in 2015. His research interests include synchrotron radiation and x-ray laser spectroscopy and scattering, chemical bonding and reactions on surfaces, ultrafast science heterogeneous catalysis, electrocatalysis in fuel cells, photocatalysis for converting sunlight to fuels, structure of water and aqueous solutions.


Daniel G. Nocera is the Patterson Rockwood Professor of Energy at Harvard University. He is widely recognized in the world as a leading researcher in renewable energy. His group has pioneered studies of the basic mechanisms of energy conversion in biology and chemistry with a particular focus on multielectron transformations and the coupling of protons to electron transfer (i.e., proton-coupled electron transfer). A recent focus in the group has been to exploit this mechanistic knowledge for the generation of solar fuels.He has accomplished the solar process of photosynthesis – the splitting of water to hydrogen and oxygen using light from neutral water, at atmospheric pressure and room temperature at efficiencies of greater than 10%. This discovery, called artificial leaf, was named by Time magazine as Innovation of the Year for 2011. He has since elaborated this invention to accomplish a complete artificial photosynthetic cycle. To do so, he created the bionic leaf, which is a bio-engineered bacterium that uses the hydrogen from that artificial leaf and carbon dioxide from air to make biomass and liquid fuels. The bionic leaf, which was named by the World Economic Forum as the Breakthrough Technology for 2017, performs an artificial photosynthesis that is ten times more efficient than natural photosynthesis. Extending this approach, Nocera has achieved a renewable and distributed synthesis of ammonia (and fertilizer) at ambient conditions by coupling solar-based water splitting to a nitrogen fixing bioorganism, which is powered by the hydrogen produced from water splitting. These science discoveries set the stage for a storage mechanism for the large scale, distributed, deployment of solar energy and distributed food production and thus are particularly useful to the poor of the world, where large infrastructures for fuel and food production are not tenable.Other areas of interest in the group include the development of proton-coupled electron transfer and its application to radical enzymology, the development of new cancer therapies by creating nanocrystal chemosensors for metabolic tumor profiling, the creation of spin frustrated materials, which has culminated in the discovery of the quantum spin liquid, and the invention of molecular tagging velocimetry technique for the measurement of highly turbulent fluid flows.
Bachelor in Chemistry from University of São Paulo (USP) in 1996, Master's Degree in Chemistry from University of Campinas (UNICAMP) in 1998 and Doctorate in Chemistry from UNICAMP in 2001 under the guidance of Prof. Marco-Aurelio De Paoli. Performed an internship during the Doctorate at Imperial College in London under the supervision of Prof. James R. Durrant. After completing his doctorate he also held a post-doctorate position at Imperial College in the same research group. In 2003, he held another postdoctoral program at USP under the supervision of Prof. Henrique Toma. He is currently Professor of the Chemistry Institute of UNICAMP. He has experience in the field of Chemistry, with emphasis in the application of nanomaterials in Solar Energy Conversion, working mainly in the following subjects: inorganic nanoparticles of chalcogenides and perovskite (quantum dots) in light emitting diodes (LED); photocatalytic oxide / graphene nanocomposites for the generation of hydrogen and direct conversion of CO2 into solar fuels; emerging solar cells (in particular TiO2 / dye cells and perovskite solar cells). In 2017 he held a sabbatical at SLAC-Stanford in the field of application of Synchrotron light in the characterization of materials for energy conversion. Published more than 115 papers, 3 patents, 1 book and 7 book chapters. She is the leader of the reserach on emerging photovoltaics in Latin America.
David J. Norris is currently the Director of the Optical Materials Engineering Laboratory and Professor of Materials Engineering at ETH Zurich. He received his B.S. and Ph.D. degrees in Chemistry from the University of Chicago (1990) and MIT (1995), respectively. After an NSF postdoctoral fellowship at the University of California, San Diego, he joined the NEC Research Institute in Princeton in 1997 where he led a photonics research group. He then became an Associate Professor (2001-2006) and Professor (2006-2010) of Chemical Engineering and Materials Science at the University of Minnesota. In 2010, he moved to his current position at ETH Zurich. Prof. Norris is a Fellow of the American Physical Society and the American Association for the Advancement of Science. He received the Golden Owl award at ETH in 2012 for excellence in teaching. He was awarded an Advanced Grant from the European Research Council (2014-2019). In 2015, he was the recipient of the Max R�ssler Prize.