This symposium invites contributions on investigations of the properties and dynamics of excitons, charges and spins involved in the function of organic electronic devices such as solar cells, light emitting diodes, field-effect transistors and spintronic devices. It will especially focus on the use of state-of-the-art spectroscopic techniques for the characterisation of the fundamental photophysical processes underlying the function of these devices. An understanding of energy transfer, charge separation, spin and charge transport, charge recombination and other mechanisms at the nanoscale is crucial for further developments and can be obtained with advanced characterisation techniques, including optical, vibrational and opto-electronic spectroscopies, magnetic resonance spectroscopies, photoemission spectroscopy, and X-ray scattering techniques, combined with theoretical modelling and simulation. The new insights gained will lead to the next step changes in performance of organic electronics as well as new applications.
- Photophysical processes in materials for organic electronics
- Spectroscopic characterisation of organic electronic materials
- Modelling and simulations of organic semiconductors
- Charge separation, recombination and transfer in organic photovoltaics
- Exciton and spin physics in materials for up/down conversion, singlet fission, TADF, organic LEDs
- Spin and charge transport in organic semiconductors
- Doping mechanisms for organic semiconductors
Radicals have unpaired electrons, leading to unusual physics that could be utilised in next-generation organic electronics. My research explores novel functionality that arises from the combination of luminescence, magnetism and spin properties in these materials.
Prof. Adachi obtained his doctorate in Materials Science and Technology in 1991 from Kyushu University. Before returning to Kyushu University as a professor of the Center for Future Chemistry and the Department of Applied Chemistry, he held positions as a research chemist and physicist in the Chemical Products R&D Center at Ricoh Co., a research associate in the Department of Functional Polymer Science at Shinshu University, research staff in the Department of Electrical Engineering at Princeton University, and an associate professor and professor at Chitose Institute of Science and Technology. He became a distinguished professor at Kyushu University in 2010, and his current posts also include director of Kyushu University’s Center for Organic Photonics and Electronics Research (OPERA) since 2010 and program coordinator of Kyushu University’s Education Center for Global Leaders in Molecular Systems for Devices and director of the Fukuoka i3 Center for Organic Photonics and Electronics Research since 2013.
Juan Casado
Philip Chow
Christoph Lienau
Thuc-Quyen Nguyen is a professor in the Center for Polymers and Organic Solids and the Chemistry & Biochemistry Department at University of California, Santa Barbara (UCSB). She received her Ph.D. degree in physical chemistry from the University of California, Los Angeles, in 2001 under the supervision of Professor Benjamin Schwartz. Her thesis focused on photophysics of conducting polymers. She was a research associate in the Department of Chemistry and the Nanocenter at Columbia University working with Professors Louis Brus and Colin Nuckolls on molecular self-assembly, nanoscale characterization and molecular electronics. She also spent time at IBM Research Center at T. J. Watson (Yorktown Heights, NY) working with Richard Martel and Phaedon Avouris. Her current research interests are structure-function-property relationships in organic semiconductors, sustainable semiconductors, doping in organic semiconductors, interfaces in optoelectronic devices, bioelectronics, and device physics of OPVs, photodetectors, and electrochemical transistors. Recognition for her research includes 2005 Office of Naval Research Young Investigator Award, 2006 NSF CAREER Award, 2007 Harold Plous Award, 2008 Camille Dreyfus Teacher Scholar Award, the 2009 Alfred Sloan Research Fellows, 2010 National Science Foundation American Competitiveness and Innovation Fellows, 2015 Alexander von Humboldt Senior Research Award, 2016 Fellow of the Royal Society of Chemistry, 2015-2019 World’s Most InfluentialScientific Minds; Top 1% Highly Cited Researchers in Materials Science by Thomson Reuters and Clarivate Analytics, 2019 Fellow of the American Association for the Advancement of Science (AAAS), 2023 Wilhelm Exner Medal from Austria, 2023 Fellow of the US National Academy of Inventors, 2023 de Gennes Prize in Materials Chemistry from the Royal Society of Chemistry, 2023 Elected Member of the US National Academy of Engineering, 2024 Fellow of the European Academy of Sciences, and 2025 ACS Henry H. Storch Award in Energy Chemistry.
Jess is an Imperial College Research Fellow investigating spin selective charge transport through chiral systems in the Department of Materials. She currently works in SPIN-Lab at Imperial, which is led by Professor Sandrine Heutz. She previously worked as a postdoctoral researcher in the Fuchter group at Imperial College London, where she optimised these chiral systems such that can absorb/emit circularly polarised (CP) light for CP OLEDs and OPDs. For her PhD Jess concentrated on organic photovoltaics and the development of advanced characterisation techniques to better understand molecular packing under the supervision of Dr Ji-Seon Kim. Outside of the lab, Jess is involved with several science communication and outreach initiatives. She is committed to improving diversity in science, both online and offline, and since the start of 2018 has written the Wikipedia biographies of women and people of colour scientists every single day.
Michael R. Wasielewski is currently the Clare Hamilton Hall Professor of Chemistry at Northwestern University, Executive Director of the Institute for Sustainability and Energy at Northwestern, and Director of the Center for Molecular Quantum Transduction, a United States Department of Energy Energy Frontier Research Center. His research has resulted in over 730 publications and focuses on light-driven processes in molecules and materials, artificial photosynthesis, molecular electronics, quantum information science, ultrafast optical spectroscopy, and time-resolved electron paramagnetic resonance spectroscopy. His honors and awards include membership in the National Academy of Sciences and the American Academy of Arts and Sciences; the Bruker Prize in Electron Paramagnetic Spectroscopy (EPR); the Josef Michl American Chemical Society Award in Photochemistry; the International EPR Society Silver Medal in Chemistry; the Royal Society of Chemistry Physical Organic Chemistry Award; the Chemical Pioneer Award of the American Institute of Chemists; the Royal Society of Chemistry Environment Prize; the Humboldt Research Award; the Arthur C. Cope Scholar Award of the American Chemical Society; the Porter Medal for Photochemistry; and the James Flack Norris Award in Physical Organic Chemistry of the American Chemical Society. He received his B.S., M.S., and Ph.D. degrees from the University of Chicago.