This symposium explores cutting-edge advancements in vacuum deposition techniques for the fabrication of halide perovskite-based materials and devices. It also welcomes discussions on hybrid processes that combine vacuum and other methods, as well as emerging deposition strategies that push the boundaries of current vacuum technologies for halide perovskites. It will address the challenges and innovations in achieving high-quality perovskite films with enhanced stability, efficiency, and scalability. Topics include study of nucleation and growth mechanisms, interface engineering, scalability challenges and integration strategies for thin films in photovoltaic and optoelectronic applications.
- Vacuum deposition techniques for halide perovskites and perovskite-inspired photoabsorbers
- Hybrid deposition processes for halide perovskites
- Stability and scalability of perovskite thin films and solar cell devices
- Interface engineering in vacuum-deposited perovskite devices
- In-situ growth monitoring during vacuum-based perovskite formation
- Applications in photovoltaics and optoelectronics
- Innovations in material quality and defect reduction
- Vacuum-based LEDs, Photodetectors and other optoelectronics are welcome too
Dr. Annalisa Bruno is an Associate Professor Nanyang Technological University (ERI@N), coordinating a team working on perovskite solar cells and modules by thermal evaporation. Annalisa is also a tenured Scientist at the Italian National Agency for New Technologies, Energy, and Sustainable Economic Development (ENEA). Previously, Annalisa was a Post-Doctoral Research Associate at Imperial College London. Annalisa received her B.S., M.S., and Ph.D. Degrees in Physics from the University of Naples Federico II. Her research interests include perovskite light-harvesting and charge generation properties and their implementation in solar cells and optoelectronic devices.
Hendrik (Henk) Bolink obtained his PhD in Materials Science at the University of Groningen in 1997 under the supervision of Prof. Hadziioannou. After that he worked at DSM as a materials scientist and project manager in the central research and new business development department, respectively. In 2001 he joined Philips, to lead the materials development activity of Philips´s PolyLED project.
Since 2003 he is at the Instituto de Ciencia Molecular (ICMol )of the University of Valencia where he initiated a research line on molecular opto-eletronic devices. His current research interests encompass: inorganic/organic hybrid materials such as transition metal complexes and perovskites and their integration in LEDs and solar cells.
Dr Juliane Borchert is the head of the junior research group “Optoelectronic Thin Film Materials” at the University of Freiburg as well as the head of the research group “Perovskite Materials and Interfaces” at the Fraunhofer Institute for Solar Energy Systems. She studied physics in Berlin, Groningen, and Halle (Saale). Her PhD research was conducted at the University of Oxford where she focused on co-evaporated perovskites for solar cells. She continued this research as a postdoctoral researcher at the University of Cambridge and AMOLF research institute in Amsterdam. Now she leads a team of researchers and technicians who are on a mission to develop the next generation of solar cells combining novel metal-halide perovskite semiconductors and established silicon technology into highly efficient tandem solar cells.
Selina Olthof studied physics at the University of Stuttgart (Germany) and completed her master's thesis at the Max Planck Institute for Solid State Research. In 2010, she earned her Ph.D. from the University of Dresden under Karl Leo, followed by a two-year postdoctoral stay at Princeton University with Antoine Kahn. From 2012 to 2024, she led the Surface Science Research Group in the Department of Chemistry at the University of Cologne. Recently, she was appointed Full Professor at the University of Wuppertal, where she established the Chair of Material and Surface Analysis. Her research focuses on advancing the understanding of the electronic structure of novel semiconducting materials, particularly organic semiconductors and hybrid perovskites.
Annamaria Petrozza received her PhD in Physics from the University of Cambridge (UK) in 2008 with a thesis on the study of optoelectronic processes at organic and hybrid semiconductors interfaces under the supervision of Dr. J.S. Kim and Prof Sir R.H. Friend. From July 2008 to December 2009 she worked as research scientist at the Sharp Laboratories of Europe, Ltd on the development of new market competitive solar cell technologies (Dye Sensitized Solar cells/Colloidal Quantum Dots Sensitized Solar cells). Since January 2010 she has a Team Leader position at the Center for Nano Science and Technology -IIT@POLIMI. She is in charge of the development of photovoltaic devices and their characterization by time-resolved and cw Photoinduced Absorption Spectroscopy, Time-resolved Photoluminescence and electrical measurements. Her research work mainly aims to shed light on interfacial optoelectronic mechanisms, which are fundamental for the optimization of operational processes, with the goal of improving device efficiency and stability.
Marcel Roß
Dr. Yana Vaynzof is the Chair for Emerging Electronic Technologies at the Technical University of Dresden (Germany) and a Director at the Leibniz Institute for Solid State and Materials Research Dresden. She received a B.Sc. in Electrical Engineering from the Technion – Israel Institute of Technology (Israel) in 2006 and a M. Sc. In Electrical Engineering from Princeton University (USA) in 2008. In 2011, she received a Ph.D. in Physics from the University of Cambridge (UK). Yana was a postdoctoral research associate at the Cavendish Laboratory, University of Cambridge (UK) and an assistant professor at Heidelberg University (Germany) from 2014 to 2019. Yana Vaynzof is the recipient of a number of fellowships and awards, including the ERC Starting Grant, ERC Consolidator Grant, Gordon Wu Fellowship, Henry Kressel Fellowship, Fulbright-Cottrell Award and the Walter Kalkhof-Rose Memorial Prize. She is a Fellow of the Royal Society of Chemistry and the winner of the Energy & Environmental Science Lectureship Award. Her research interests lie in the field of emerging photovoltaics, focusing on the study of material and device physics of organic, quantum dot and perovskite solar cells by integrating device fabrication and characterisation with the application and development of advanced spectroscopic methods.
BEOM-SOO kim