In the global energy context, the direct conversion of sunlight into fuels and high added-value chemicals is gaining momentum as a promising strategy to contribute to decarbonize the energy sector and the chemical industry. In this scenario, the development of novel efficient and durable photoactive and catalytic materials and architectures, as well as a deep understanding of the role of interfaces, plays a pivotal role to drive these technologies towards more mature technology readiness levels. The present symposium will focus on the development of novel materials and architectures for photocatalytic (PC) and photoelectrochemical (PEC) applications for energy conversion and the production of high added-value chemicals, particularly highlighting the synthesis, characterization and mechanistic insights.
- Direct solar water splitting (hydrogen evolution, oxygen evolution,…)
- Direct solar-driven valorization reactions of CO2, biomass, organics, and/or plastics
- Novel semiconductor and co-catalyst materials for PEC and PC (e.g., ternary oxides, perovskites, 2D materials, organics, MOFs, COFs, and SACs)
- Novel architectures and approaches for PEC and PC (e.g., heterojunction, Z-scheme, tandem, and decoupled cells or systems)
- Advanced characterization techniques (e.g., in-operando) of PEC and PC systems covering e.g., performance, stability, charge transfer dynamics, and syntheses
Dr Eslava leads a cutting-edge research group focused on the development of novel synthesis approaches for (photo)electrochemical and (photo)catalytic materials. His team's work involves exploring a wide range of materials, including transition metal oxides, halide perovskites, organic bulk heterojunctions, oxide perovskites, and graphene derivatives. By conducting comprehensive physicochemical and electrochemical characterizations, they aim to link material properties to practical applications, particularly in the field of energy conversion. Their research has significant interdisciplinary reach, spanning chemical engineering, chemistry, physics, and materials science. Dr Eslava's research contributions have been widely recognized, with over 85 publications in leading journals like Nature Energy, Advanced Materials, Energy & Environmental Science, and Nature Communications. He has been awarded prestigious funding from organizations such as The Royal Society, the Royal Society of Chemistry, EPSRC, and Innovate UK. His innovative contributions to the field earned him the Warner Medal from the Institution of Chemical Engineers for his impactful research and dissemination efforts.
Sixto Giménez (M. Sc. Physics 1996, Ph. D. Physics 2002) is Associate Professor at Universitat Jaume I de Castelló (Spain). His professional career has been focused on the study of micro and nanostructured materials for different applications spanning from structural components to optoelectronic devices. During his PhD thesis at the University of Navarra, he studied the relationship between processing of metallic and ceramic powders, their sintering behavior and mechanical properties. He took a Post-Doc position at the Katholiek Universiteit Leuven where he focused on the development of non-destructive and in-situ characterization techniques of the sintering behavior of metallic porous materials. In January 2008, he joined the Group of Photovoltaic and Optoelectronic Devices of University Jaume I where he is involved in the development of new concepts for photovoltaic and photoelectrochemical devices based on nanoscaled materials, particularly studying the optoelectronic and electrochemical responses of the devices by electrical impedance spectroscopy. He has co-authored more than 80 scientific papers in international journals and has received more than 5000 citations. His current h-index is 31.
I'm an Associate Professor in the Department of Chemical Engineering at Imperial College London (ICL). My principal interests and expertise are in the science and engineering of electrochemical energy conversion, CO2 reduction, and separation processes for industrial effluent treatment and material recycling. After obtaining my MSci degree in Physics at ICL in 2007, I moved to the Department of Chemical Engineering to carry out PhD studies in electrochemical wastewater treatment through heavy metal recovery. I subsequently conducted multiple postdoctoral research projects in the same department, including in photoelectrochemical solar fuel production, waste management by electrochemical treatment of waste streams and valorisation of CO2 via conversion into fuels. Academic research projects in my group are aimed at solving industrial problems through both experimental and numerical modelling investigations.
Jong Hyeok Park is professor at Department of Chemical and Biomolecular Engineering in Yonsei university, Republic of Korea. His research focuses on solar-to-hydrogen conversion devices, Li & Na ion batteries, perovskite solar cells.
He received his Ph.D. in chemical engineering from KAIST, Republic of Korea, in August 2004. Then, he joined University of Texas at Austin, USA, as a postdoctoral researcher in 2004 (under Prof. Allen J. Bard). He is an author and a co-author of 320 papers and 100 patents (h-index: 78).
He has received various prestige awards such as PBFC Award (2012) from The Korean Electrochemical Society, SKKU Young Fellowship (2012) from SKKU, Horace G. Underwood Fellowship (2018) from Yonsei University, Award of Excellence (2017) from Korean Academy of Science and Technology, S-Oil Next Generation Researcher Award (2021).
Kevin Sivula obtained a PhD in chemical engineering from UC Berkeley in 2007. In 2011, after leading a research group in the Laboratory of Photonics and Interfaces at EPFL, he was appointed tenure track assistant professor. He now heads the Laboratory for Molecular Engineering of Optoelectronic Nanomaterials (http://limno.epfl.ch) at EPFL.
Ludmilla is an Associate Professor of Inorganic Chemistry at the Univeristy of Oxford. She obtained her B.Sc and M.Sc. degrees from the University of Siegen (Germany). During her undergraduate studies she developed an interest in electrochemistry and semiconductor physics driving her to pursue a M.Sc. project on dye-sensitized solar cells in the group of Professor Michael Grätzel at the École Polytechnique Fédérale de Lausanne (EPFL, Switzerland). Staying in the same group, Ludmilla worked on oxide thin film photoelectrodes applied in photoelectrochemical water splitting and perovskite solar cells during her Ph.D. degree which she obtained in 2016. She then joined the group of Professor James Durrant at Imperial College London to study photochemical and photophysical processes in semiconductors using time-resolved spectroscopy and shortly after was awarded the Marie Skłodowska-Curie Fellowship (2017-2019). Ludmilla began her independent research career as Imperial College Research Fellow (2019-2021) before moving to Oxford in October 2021. Her research at Oxford aims at the design of atomically defined photo- and electrocatalysts that convert CO2, water and other “waste products” to energy-rich fuels and chemicals with high conversion efficiency, selectivity and long operational stability.