In recent years there is a growing interest in designing new catalytic materials that could in principle benefit from the virtues of both molecular and bulk (photo)-electrocatalysts. An ideal catalyst material should in one hand exhibit the well-defined nature of a molecular active site, allowing easier understanding of operation mechanisms as well as high TOFs. On the other hand, the catalyst should also possess the robustness, high conductivity, and overall efficiency of a heterogeneous bulk catalyst. Possible strategies to achieve this goal: 1) imprinting of single-atom sites in carbon-based materials 2) using porous framework materials that contain molecular active sites 3) hybrid systems with immobilized molecular catalysts on inorganic heterogeneous catalysts 4) bulk materials with bio-inspired functionalities. The symposium will cover a wide range of (Photo)-electrochemical reaction for energy conversion as well as environmental remediation (e.g. organic transformations). This cross-disciplinary symposium will bring together experts in homogenous (molecular) and heterogeneous catalysis to discuss the latest developments in these fast-growing topics.
- Novel catalytic materials (e.g. MOF, COF, Carbon Nitride, Organic and Inorganic materials) inspired by molecular catalysts
- Catalytic schemes for environmental remediation
- Bio-inspired molecular catalysts
- Study of catalytic mechanisms
- Advancements in Water splitting, CO2 reduction, Ammonia production, biomass conversion and other organic transformation reactions
Prof. Dr. Matthias Driess
Born: 1961 – Eisenach, Germany
Affiliation: Department of Chemistry, TU Berlin, Straße des 17 Juni 135, 10623 Berlin
Telephone: +49 (0) 30 314–22265
Email: matthias.driess@tu-berlin.de
https://www.tu.berlin/en/metallorganik
Scientific vita:
2005– Professor of Inorganic Chemistry (Metalorganics and Inorganic Materials), TU Berlin 1996–2004 Professor of Inorganic Chemistry (Cluster and Coordination Chemistry), U Bochum 1996 Professor at the Institute of Inorganic Chemistry, U Freiburg
1993 Habilitation in Inorganic Chemistry, U Heidelberg
1990–1996 Junior Scientist at the Institute of Inorganic Chemistry, U Heidelberg 1988–1989 Postdoc, Department of Chemistry (R. West), Madison, WI, USA
1988 PhD Chemistry (W. Siebert), Metalorganic Chemistry, Boron Chemistry 1985 Diploma in Chemistry, U Heidelberg
Fields of interest:
Molecular models of heterogeneous catalysts and bioinspired homogeneous catalysts; Molecular approach to heterogeneous catalysts for efficient light-driven and electrocatalytic energy conversion (e.g., overall water-splitting); Organometallic precursors for low-temperature synthesis of nanoscaled metal oxides; Coordination chemistry for activation of small molecules and homogeneous catalysis; Development of multifunctional, low-valent silicon-based strong s-donor ligands in homogeneous catalysis
Awards (selection):
2016 Davison Lecture of the Inorganic Chemistry Division of the MIT (USA) 2016 Visiting Professor, ETH Zürich (Switzerland)
2014 Member of the Berlin-Brandenburg Academy of Sciences and Humanities 2013 Member of the German National Academy of Sciences, Leopoldina
2011 WACKER Silicone Award
2010 Alfred-Stock-Memorial Award of the German Chemical Society
Industry cooperations:
BASF SE; Wacker AG
Organizational activities (selection):
2016– Vice coordinator of the Einstein Center of Catalysis 2012– Scientific Director of the UniCat-BASF Jointlab (BasCat) 2007–2018 Spokesperson of the Cluster of Excellence UniCat
2017- Scientific Director of the Chemical Invention Factory (CIF, John Warner Center for start-ups in Green Chemistry)
2019- Deputy of the Cluster of Excellence UniSysCat
Publications (selection):
N. J. Lindenmaier, S. Wahlefeld, E. Bill, T. Szilvási, C. Eberle, S. Yao, P. Hildebrandt, M. Horch, I. Zebger, M. Driess, An S-oxygenated [NiFe] complex modelling sulfenate intermediates of an O2- tolerant hydrogenase, Angewandte Chemie International Edition 2017, 56, 2208–2211.
Y. Wang, A. Kostenko, S. Yao, M. Driess, Divalent Silicon-Assisted Activation of Dihydrogen in a Bis(N-heterocyclic silylene)xanthene Nickel(0) Complex for Efficient Catalytic Hydrogenation of Olefins, Journal of the American Chemical Society 2017, 139, 13499-13506.
A. Indra, P. W. Menezes, K. Kailasam, D. Hollmann, P. StrasserM. Schröder, A. Thomas, A. Brückner, M. Driess, Nickel as a co-catalyst for photocatalytic hydrogen evolution on graphitic-carbon nitride (sg-CN): what is the nature of the active species?, Chem. Commun. 2016, 52, 104-107.
Yao, F. Meier, N. Lindenmaier, R. Rudolph, B. Blom, M. Adelhardt, J. Sutter, S. Mebs, M. Haumann, K. Meyer, M. Kaupp, M. Driess, Biomimetic [2Fe-2S] clusters with extensively delocalized mixed-valence iron centers, Angewandte Chemie International Edition 2015, 53, 12185.
T. Mätsenen, D. Gallego, T. Szilvasi, M. Driess, M. Oestreich, Peripheral mechanism of a carbonyl hydrosilylation catalysed by an SiNSi iron pincer complex, Chemical Science 2015, 6, 7143–7149.
P. W. Menezes, A. Indra, N. R. Sahraie, A. Bergmann, P. Strasser, M. Driess, Cobalt–manganese- based spinels as multifunctional materials that unify catalytic water oxidation and oxygen reduction reactions, ChemSusChem 2015, 8, 164–171.
P. W. Menezes, A. Indra, O. Levy, K. Kailasam, V. Gutkin, J. Pfrommer, M. Driess, Using nickel manganese oxide catalysts for efficient water oxidation, Chemical Communications 2015, 51, 5005– 5008.
P. W. Menezes, A. Indra, D. González-Flores, N. R. Sahraie, I. Zaharieva, M. Schwarze, P. Strasser, H. Dau, M. Driess, High-performance oxygen redox catalysis with multifunctional cobalt oxide nanochains: Morphology-dependent activity, ACS Catalysis 2015, 5, 2017–2027.
G. Tan, T. Szilvási, S. Inoue, B. Blom, M. Driess, An elusive hydridoaluminum(I) complex for facile C–H and C–O bond activation of ethers and access to its isolable hydridogallium(I) analogue: Syntheses, structures, and theoretical studies, Journal of the American Chemical Society 2014, 136, 9732.
B. L. Tran, B. Li, M. Driess, J. F. Hartwig, Copper-catalyzed intermolecular amidation and imidation of unactivated alkanes, Journal of the American Chemical Society 2014, 136, 2555.
Dr Eslava leads a cutting-edge research group focused on the development of novel synthesis approaches for (photo)electrochemical and (photo)catalytic materials. His team's work involves exploring a wide range of materials, including transition metal oxides, halide perovskites, organic bulk heterojunctions, oxide perovskites, and graphene derivatives. By conducting comprehensive physicochemical and electrochemical characterizations, they aim to link material properties to practical applications, particularly in the field of energy conversion. Their research has significant interdisciplinary reach, spanning chemical engineering, chemistry, physics, and materials science. Dr Eslava's research contributions have been widely recognized, with over 85 publications in leading journals like Nature Energy, Advanced Materials, Energy & Environmental Science, and Nature Communications. He has been awarded prestigious funding from organizations such as The Royal Society, the Royal Society of Chemistry, EPSRC, and Innovate UK. His innovative contributions to the field earned him the Warner Medal from the Institution of Chemical Engineers for his impactful research and dissemination efforts.
Head of the Laboratory of Solar Fuels at the Centrum Nowych Technologii Uniwersytetu Warszawskiego. She obtained a PhD in Biological sciences in 1999 from the University of Warwick, UK. Postdoctoral research conducted in the group of James Barber at Imperial College London, UK led to several discoveries of novel molecular mechanisms of photosynthetic adaptation to changing environment (e.g. dissecting the molecular components of state transitions) and refining the crystallographic structure of the PSII oxygen evolving complex. Habilitation in 2009 from the University of Warsaw (UW). Since 2011 Associate Professor having established an independent research group at the UW. In 2011 Prof. Kargul established a node for solar fuels research in Poland and has led several projects on application of robust natural light-harvesting molecular nanomachines for construction of biohybrid solar cells and solar-to-fuel devices. She has extensive experience and success in leading several national and international initiatives (e.g. Founding Partner of ESF EuroSolarFuels and H2020 SUNRISE consortia; Member of Scientific Executive Board of SUNERGY large-scale R&I initiative) as well coordinating the international projects (e.g. bilateral Polish-Turkish consortium POLTUR/GraphESol and Polish/German/French/Turkish consortium Solar driven chemistry 2/SUNCOCAT) which have been focused on natural and semi-artificial solar energy conversion systems. She serves as the International Ambassador of the British Biochemical Society and serves on several editorial and strategic executive boards, e.g., as member of the Scientific Advisory Board of European Society for Photobiology, as Senior Editor of the International Journal of Biochemicstry and Cell Biology, member of the Grants Committee of the Biochemical Society (UK), expert of the NAWA programme of the Polish Ministry of Science and Higher Education, expert in NZ1 Panel of the National Science Centre, member of the Advisory Board of the European Green Deal, member of KIS4 Workgroup of Poland’s Ministry of Economic Development and Technology. Prof. Kargul’s highly interdisciplinary research spans structural biology, biochemistry, and plant physiology with electrochemistry, biophysics and material science. In her current research she focuses on structural and mechanistic aspects of the function and adaptation of the natural photosynthetic apparatus in extremophilic biophotocatalysts. She and her group apply this fundamental knowledge for the rational construction of biomolecular solar-to-fuel devices for optimised solar conversion, incorporating photoenzymes and various materials decorated with plasmonic nanoparticles.
Antoni Llobet was born in Sabadell (Barcelona) in 1960.
He obtained his PhD at the Universitat Autònoma de Barcelona (UAB) with Prof. Francesc Teixidor in July 1985, and then moved to the University of North Carolina at Chapel Hill for a postdoctoral stay with Prof. Thomas J. Meyer, until the end of 1987.
After a short period again at UAB and at University of Sussex-Dow Corning (UK) he then become a Scientific Officer for the Commission of the European Communities, based in Brussels, Belgium (1990-1991).
Then he was appointed Senior Research Associate at Texas A&M University in College Station (USA) from 1992 till 1993, working with the groups of Prof. Arthur E. Martell and Donald T. Sawyer. From 1993 till 2004 he joined the faculty of the Universitat de Girona where he was promoted to Full Professor in 2000. At the end of 2004 he joined the faculty of UAB also as Full Professor.
In September 2006, he was appointed as Group Leader at the Institute of Chemical Research of Catalonia (ICIQ) in Tarragona.
His research interests include the development of tailored transition metal complexes as catalysts for selective organic and inorganic transformations including the oxidation of water to molecular dioxygen, supramolecular catalysis, the activation of C-H and C-F bonds, and the preparation low molecular weight complexes as structural and/or functional models of the active sites of oxidative metalloproteins.
In 2000 he received the Distinction Award from Generalitat de Catalunya for Young Scientists. In 2011 he was awarded the Bruker Prize in Inorganic Chemistry from the Spanish Royal Society of Chemistry (RSEQ) and in 2012 he has been awarded with the “Hermanos Elhuyar-Hans Goldschmidt” lecture jointly by RSEQ and the German Chemical Society (GDCh).
At present he is a member of the Editorial Advisory Board of “Catalysis Science and Technology” from the Royal Society of Chemistry, “Inorganic Chemistry” from the American Chemical Society and “European Journal of Inorganic Chemistry” from Wiley-VCH.
Charles Machan (muh-hahn) was born in Madison, WI and grew up in Wauwatosa, WI where he attended Marquette University High School before going to Washington University in St. Louis (WashU). While at WashU he played football for four years as a defensive tackle and majored in Chemistry and German (B.A. 2008). Charles attended Northwestern University for graduate school and completed a Ph.D. in Inorganic Chemistry (2012) under the supervision of Chad A. Mirkin. At Northwestern he served as President of the Alpha Gamma Chapter of Phi Lambda Upsilon, a co-ed chemistry honors fraternity, and received the Edmund W. Gelewitz Award for Outstanding Senior Graduate Student (2012). From 2013-2016 he was a postdoctoral researcher with Clifford P. Kubiak at the University of California, San Diego. He is currently an Associate Professor in the Department of Chemistry at the University of Virginia.
Peter Strasser is the chaired professor of �Electrochemistry for energy conversion and storage� at the Chemical Engineering Division of the Department of Chemistry at the Technical University of Berlin. Prior to his appointment, he was Professor at the Department of Chemical and Biomolecular Engineering at the University of Houston. Before moving to Houston, Prof. Strasser served as Senior Member of staff at Symyx Technologies, Inc., Santa Clara, USA. In 1999, Prof. Strasser earned his doctoral degree in Physical Chemistry and Electrochemistry from the �Fritz-Haber-Institute� of the Max-Planck-Society, Berlin, Germany, under the direction of the 2007 Chemistry Nobel Laureate, Professor Gerhard Ertl. In the same year, he was awarded the �Otto-Hahn Research Medal� by the Max-Planck Society. In 1996, Dr. Strasser was visiting scientist with Sony Central Research, Yokohama, Japan. He studied chemistry at Stanford University, the University of Tuebingen, and the University of Pisa, Italy. Professor Strasser is interested in the fundamental Materials Science and Catalysis of electrified liquid solid interfaces, in particular for renewable energy conversion, energy storage, production of fuels and chemicals.