The transition to sustainable energy is a pressing challenge facing society, which can be addressed through the use of energy conversion technologies such as water electrolysis and hydrogen fuel cells. However, these technologies are limited by the lack of optimal electrocatalysts that are active, stable, selective, and abundant. To address this issue, several research directions have emerged in recent years: (i) fundamental research on well-defined systems combining advanced theoretical methods and operando experimental techniques, aiming at the knowledge-driven design of improved materials; (ii) automation of materials synthesis, characterization, and performance evaluation to identify promising candidates through fast screening of material libraries; (iii) electrochemical engineering ensuring optimized conditions for electrocatalysts utilization. This symposium brings together researchers working on these approaches to unite efforts and accelerate the discovery and implementation of heterogeneous electrocatalysts for energy conversion processes in the absence of light.
- Understanding electrocatalysts activity and stability: application of operando experimental techniques
- Understanding electrocatalysts activity and stability: application of advanced theoretical methods
- Knowledge-driven design and synthesis of improved electrocatalysts and catalyst layers
- Discovery of new electrocatalytic materials using automatic and autonomous tools
- Electrochemical engineering: optimization of electrocatalysts utilization in electrochemical reactors
Doing my BSc/MSc in Physics and PhD in an interdisciplinary program crossing the disciplines like Chemical Engineering, Nanotechnology, and Electrochemistry made me who I am today – a scientist who enjoys the challenge of multifaceted research.
I enjoy doing basic research in order to solve applied tasks. This explains my research interest in fundamental physical chemistry, e.g. oxidation and dissolution of metals and semiconductors, electrocatalysis, and electrochemistry at modified interfaces but also electrochemical engineering, e.g. development and optimization of catalyst layers in fuel cells and water electrolyzes.
Progress in basic research is often a direct outcome of previous achievements in experimental instrumentation. Hence, a significant part of my interest is in the development of new tools, e.g. electrochemical on-line mass spectrometry, gas diffusion electrode approaches, and high-throughput screening methods.
Assoc. Prof. Nejc Hodnik graduated and later received his PhD from the Faculty of Chemistry and Chemical Engineering at the University of Ljubljana. During his doctorate, he was employed as a young researcher at the National Institute of Chemistry (NIC) under the direction of Dr. Stanko Hočevar, who led the research into fuel cells. In 2014, on the basis of an individual prestigious Marie-Curie Scholarship (now Marie Skłodowska-Curie), he completed his postdoctoral training in Düsseldorf, Germany, at the Max-Planck Institute; his mentor was Prof. Dr. Karl Mayrhofer. In 2016, he returned to Slovenia and began working at the Department of Catalysis and Chemical Reaction Engineering at the NIC. Among other things, he obtained a postdoctoral project from the Slovenian Research Agency (ARRS) and in 2017, with the ARRS scholarship, worked for three months with the Head of an ERC project in Italy. In 2019, he was appointed associate professor at the University of Nova Gorica where he works in the Materials doctoral programme (tertiary study). Based on the acquired ERC StG project (123STABLE) in 2019, a new research Laboratory for electrocatalysis was set up in 2020 at NIC. His main topics are fuel cell and electrolyzer catalyst's activity and stability.
Virgil Andrei is a Nanyang Assistant Professor (NAP) in the School of Materials Science and Engineering at NTU Singapore. His research revolves around the integration of renewable energy technologies (photoelectrocatalysis, photovoltaics, thermoelectrics) for effective solar-to-chemical synthesis. His work places a strong focus on rational material, catalyst and device design, introducing modern fabrication techniques towards low-cost, large-scale solar fuel applications.
Virgil was born in Bucharest, Romania. He obtained his Bachelor and Master of Science degrees in chemistry from Humboldt-Universität zu Berlin, where he studied thermoelectric polymer pastes and films in the group of Prof. Klaus Rademann (2014–2016). He then pursued a Ph.D. in chemistry at the University of Cambridge (2016–2020), where he developed perovskite-based artificial leaves in the group of Prof. Erwin Reisner, working closely with the optoelectronics group of Prof. Richard Friend at the Cavendish Laboratory. During his Title A Research Fellowship at St. John’s College, Cambridge (2020-2025), he introduced unconventional concepts including floating thin-film devices for water splitting and carbon dioxide reduction, pixelated devices for long term hydrogen production, or integrated thermoelectric modules for solar waste heat harvesting. As a visiting Winton Fellow in the group of Prof. Peidong Yang at the University of California, Berkeley (2022), he expanded the reaction scope of these systems further to value-added hydrocarbons and organic oxidation products.
Academic Career
Since May 2020: W3 Associate Professor at the Department of Physics, TUM.
2014 - 2020: W2 Assistant Professor at the Department of Physics, TUM.
2010 - 2014: Group leader ("Adsorption and Electrocatalysis") at the Center for Electrochemical Sciences (CES) at Ruhr University Bochum, Germany.
2008 - 2010: Post-doc, Department of Physics, Technical University of Denmark.
2006 - 2008: Post-doc, Faculty of Science and Technology, University of Twente, the Netherlands.
2002 - 2005: PhD in Physical and Solid State Chemistry, Belarusian State University, Minsk, Belarus.
Awards
• The German National Ernst Haage Award for the research in the field of chemical energy conversion (2016)
• Hans-Jürgen Engell Award of the International Society of Electrochemistry (ISE Prize for Electrochemical Materials Science) for the research on electrocatalysis and in situ characterisation of the electrode–electrolyte interface (2013)
Dr. Jasna Jankovic is a Professor in the Materials Science and Engineering Department at the University of Connecticut (UConn) since 2018. Prior to joining UConn, she completed her Ph.D. at the University of British Columbia, Department of Chemical Engineering, followed by a 7 years employment as a Senior Research Scientist at the Automotive Fuel Cell Cooperation in Burnaby, Canada, a joint venture between Ford Motor Company and Daimler. Dr. Jankovic’s research focus is in advanced characterization of fuel cells, electrolyzers and batteries using microscopy and spectroscopy techniques, fabrication of novel electrodes for electrochemical devices, as well as Science, Technology, Engineering and Mathematics (STEM) and clean energy education. She has more than 25 years of experience in clean energy sector, more than 50 publications and 2 patents. Dr. Jankovic is a recipient of several Natural Sciences and Engineering Research Council (NSERC) awards in Canada, and a number of National Science Foundation (NSF) awards and Department of Energy (DOE) sub-awards in the US.
Alex Martinez
Alexandr N. Simonov is a physical chemist specialising in (photo)electrochemistry and (photo)electrocatalysis. Research in his group is aimed at understanding and designing new effective ways to generate and use renewable electricity for the sustainable chemistry technologies. His major research focuses on the development of catalysts, electrode architectures and electrolytic devices for generation of hydrogen through splitting of water (including seawater), reduction of nitrogen to ammonia, as well as selective oxidation of ammonia and nitrogen to nitrates for fertiliser generation. He collaborates with Australian and German industry on several projects aiming to develop new cost-effective water electrolysers. He is a co-founder of a spin-out company Jupiter Ionics Pty Ltd. working on the commercialisation of the Monash technologies for ammonia synthesis and oxidation.