Bioelectronic systems have recently shown unprecedented potential for developing therapies as well as new diagnostic tools for healthcare. These systems target to controlling cellular activity by delivering local electrical cues, or to sensing bioelectrical signals induced by biological events. Within this multi-disciplinary symposium, we aim to bridge the gap between biology, engineering, and materials science to promote a holistic overview on bioelectronic systems for therapeutic and diagnostics. We aim to bringing together researchers with diverse expertise across various fields, and from around the world, to share their knowledge on bioelectronic systems for a wide range of applications in biology, disease treatment and diagnosis. We hope that this symposium will serve as a comprehensive reference of the state-of-the-art of the field, while also paving the way for further advancements.
Program- Neuronal Bioelectronic interfaces
- Bioelectronic Implants
- In vitro Bioelectronic Systems
- Optical Stimulation of living systems
- Biosensing
- Neuromorphic Bioelectronics
Achilleas Savva is an Assistant Professor in the Bioelectronics group at Delft University of Technology, in The Netherlands. He received his B.Sc. and M.Sc. in chemical engineering from Aristotle University of Thessaloniki in Greece, in 2010. He then obtained his PhD in Materials Science and Engineering from Cyprus University of Technology in 2014. His PhD research was focused on organic optoelectronics for renewable energy. In 2017 he joined the group of Professor Sahika Inal in KAUST, Saudi Arabia, as a postdoc, and expanded his research on organic bioelectronics. In 2019, he joined the group of Professor Róisín Owens at the University of Cambridge where he secured the Marie Skłodowska-Curie Postdoctoral Fellowship. He developed several novel organic bioelectronic devices such as biosensors, light sensitive devices for photo-stimulation of neurons, 3D in vitro human stem cell models, among others. Achilleas was born in Limassol, Cyprus.
Husam Alshareef is a Professor of Materials Science and Engineering at King Abdullah University of Science and Technology (KAUST). He is also the Director of the newly-established Center of Excellence in Renewable Energy and Storage Technologies at KAUST. He obtained his Ph.D. at NC State University followed by a post-doctoral Fellowship at Sandia National Laboratories, USA.
He spent over 10 years in the semiconductor industry where he implemented processes in volume production for chip manufacturing. He joined KAUST in 2009, where he initiated an active research group focusing on the development of nanomaterials for energy and electronics applications. His work has been recognized by over 25 awards including the SEMATECH Corporate Excellence Award, two Dow Sustainability Awards, the Kuwait Prize for Sustainable and Clean Technologies, and the KAUST Distinguished Teaching Award. He has published over 600 papers and 80 issued patents. He is a Fellow of several prestigious societies including the American Physical Society (APS), Institute of Electrical and Electronics Engineers (IEEE), US National Academy of Inventors (NAI), Institute of Physics (IoP), Royal Society of Chemistry (RSC), and the Institute of Materials, Minerals and Mining. He has been a Clarivate Analytics Highly-cited Researcher in Materials Science for several years.
Maria Asplund is professor in Bioelectronics at Chalmers University of Technolology. Her research expertise is in bioelectronics, flexible microtechnology, tissue-device interaction and electronic biomaterials. After completing her PhD at the Royal Institute of Technology (Stockholm, 2009) she led her own research group at the University of Freiburg, Germany (2011-22). Her work has resulted in new technologies which contributes to smaller, more energy efficient and durable bioelectronics in the future. She currently holds ERC starting and proof of concept grants, is a Visiting Professor at Luleå University of Technology (2019-23) and an editorial board member of Scientific Reports. Maria Asplund is furthermore the scientific secretary for the Swedish Society for Medical Engineering.
Rainer SCHINDL is a biophysicist with strong interest in bioelectronic medicine and electrophysiology. His research combines in vivo studies on live-cells and in silico simulations. He has done pioneering work in organic light-triggered semiconductors for neuronal stimulation. Currently, he focuses on optoelectronic neuro-stimulation and electronically controlled local chemotherapy.
Georgios Spyropoulos (a.k.a George D. Spyropoulos) joined Ghent University as an assistant professor in the Department of Information Technology, Faculty of Engineering and Architecture. He received his B.Sc. and M.Sc. in Materials Science and Technology from the University of Crete (Greece). He joined the nanomaterials & organic electronics group (Greece) of Prof. Kymakis to work on organic electronics for his bachelor and master thesis. He then moved to Prof. Christoph J. Brabec’s group at Materials for Electronics and Energy Technology (i-MEET), focusing on smart device fabrication strategies for solution-processed solar cells to pursue his Ph.D. in Materials Science and Engineering at the Friedrich Alexander University Erlangen-Nürnberg (Germany). He is the recipient of the Cross-disciplinary postdoctoral fellowship awarded by the Human Frontier Science Program Organisation. His postdoctoral research at Prof. Khodagholy's Translational Neuro-Electronics lab of Columbia University (USA) aimed at the development of neural interface devices based on organic electronics.
His multidisciplinary research is focused on innovating neural interfaces that can address fundamental questions regarding the auditory-neurological pathways and the neurobiology of the brain, as well as conduct diagnostics and interventions to mitigate relevant disorders. Prof. Spyropoulos is the principal investigator of the Neural Waves (NeW) lab.