Environmental electrochemistry and electrochemical engineering are critical in addressing contemporary threats to Earth's ecosystems. Leveraging electrochemical principles and materials engineering, recent years have witnessed the development of sustainable solutions amidst pressing concerns like pollution, climate change, and resource depletion.
Electrochemical techniques offer efficient means to eliminate pollutants from water, soil and air through separation, reduction, and advanced oxidation processes. These methods target specific pollutants while minimizing secondary waste accumulation.
Environmental electrochemistry provides innovative solutions for water treatment, and critical/strategic raw materials recovery. Techniques like capacitive/faradaic deionization, electrodialysis, and ion exchange contribute to sustainable water management and resource utilization, promoting novel recycling strategies. Furthermore, electrochemical precipitation and membrane filtration facilitate the extraction and recovery of valuable resources from biomass and waste streams.
Designing, modeling, and studying water-energy interactions at a larger scale is also essential for expanding the industrial interest in these electrochemical technologies.
In this context, there is an impelling need to develop next-generation efficient materials, ranging from polymers employed in ion exchange membranes or as ion capture electrodes, to metal oxides or single atoms active centers acting as electrocatalysts for faradaic reactions, not forgetting different forms of carbon-based functional materials as primary active sites, conductive additives or anchoring supports.
- Advanced materials for electrochemical conversion and removal of pollutants in water/soil/air
- New systems for electrochemical water disinfection
- Development of electrocatalysts based on innovative materials and concepts
- Emerging active electrode materials for selective resource recovery/capture
- Organic membranes and electrodes for environmental applications
- Hybrid and multifunctional electrode materials and electrochemical reactors
- Photoelectrocatalysts and photoreactors
- Environmental applications based on carbon electrodes
- Electrochemical waste and biomass valorization
- Electrochemical membrane filtration technologies (e.g., electrodialysis)
- Modeling, simulation and scale-up (incl., material synthesis and reactors)
- Water-Energy Nexus
The C.V. of Julio J. Lado shows a significant multidisciplinary character, a strong publication record achieved working in several international environments (USA, Brazil and Germany), scientific independence and funding ability.
Julio J. Lado obtained his PhD in 2014 at the University of Alcalá. Lado realized his PhD thesis "Study of asymmetric capacitive deionization cells for water treatment applications" in IMDEA Water Institute in collaboration with the Environmental Engineering Department of the University of Wisconsin-Madison (USA) under the supervision of Prof. Marc A. Anderson (Different research stays amounting for 2.5 years.). As result of his thesis studies, he published 9 articles, collaborated in research projects funded by National Science Foundation (NSF) and Office of Naval Research (ONR).
In 2014, he started his postdoctoral career in the group of Assistant Professor Luis A.M. Ruotolo (Federal University of São Carlos, Brazil) by receiving a prestigious fellowship from the CAPES (Brazilian Agency). During his stay, he studied the use of biowaste materials as precursors for preparing activated carbon electrodes for energy storage and environmental applications. He participated in projects funded by Brazilian research agencies (FAPESP and CNPq).
In February 2017 he joined the Electrochemical Processes Unit in IMDEA Energy funded by young Talent program of Comunidad of Madrid. His work was focused on developing energy efficient electrochemical processes for environmental applications. Initially he collaborated also in the DC-SOIAS project funded by MINECO through the Retos Call (RTC-2015-3969-5) focused on valorization of seawater desalination brines. In the second half of his TALENTO grant Lado worked on preferential or selective electrochemical capture of different ions or charged compounds. In this topic the study of an injectable semi-solid electrodes cell prepared to capture and separate lithium ions led to fill a European patent in 2020.
At the end of 2021 Dr Lado was awarded with two grants: JIN funded by Ministry of Science and Talento Senior by the Comunidad de Madrid. The objective of the Talento proposal, named SELECTVALUE, is to explore the potential of electrochemical faradaic ion pumping technologies for environmental applications. In the framework of this project, commercial battery inorganic materials but also organic polymers are being employed either to capture single ions (such as lithium or sodium) or to modify the mono/divalent composition. Moreover, he is currently participating in international projects such as FET Proactive – HYSOLCHEM, focused on organic compounds capture and degradation by electrochemical methods while reducing CO2 and producing chemicals. During this project he enjoyed research stay in the synchrotron of Diamond Light Source (UK) to perform in operando electrochemical experiments. Dr Lado has been also recently involved in industrial CDI projects with companies such as FCC Aqualia to build a CDI system for a brackish water desalination plant (REWAISE contract).
Julio J. Lado is co-author of 30 scientific publications with 1002 citations, with an h index of 18. He is author of 2 patents and has participated in more than 40 international conferences (36 oral presentations and 5 posters). He has directed 10 Master Thesis along with several Research Works and Final Degree Projects. He is also currently supervising two predoctoral researchers and two master students.
Cleis Santos received her Ph.D in electrochemistry in 2017 at Universidad Autónoma de Madrid. In this period, she developed desalination devices based on Capacitive Deionization at IMDEA Energy (Electrochemical Processes Unit). Afterwards, she was a postdoctoral researcher at IMDEA Materials (Multifunctional Nanocomposites Group) where she studied advanced CNT fibres materials for electrochemical-based desalination applications. She also studied in situ small/wide angle X-ray scattering techniques with synchrotron light. In 2020, she joined with a MSCA Individual Fellowship the group of Prof. La Mantia (University of Bremen). Since 2024, she is the group leader of Electrochemical Processes for Recycling and Water Treatment Group (RecWass Group) in the Electrical Energy Storage Department of Fraunhofer IFAM. Her current work is focused on the development of electrochemical technologies to tackle the need of novel battery recycling methods and energy-efficient solutions for water treatment (desalination, critical raw materials recovery, pollution removal). aiming to face challenges related to the water-energy nexus.
Ignasi Sirés (Researcher ID: C-7054-2013) obtained his PhD degree in Chemistry in 2007 from the University of Barcelona (UB, Spain). He also became a Materials’ Engineer after conducting studies at this University and at the Polytechnic University of Catalonia (UPC). He has undertaken postdoctoral stays and professor-researcher positions at: Università degli Studi di Genova, Université Paris-Est, University of Southampton in UK and Universidad de Guanajuato. He has also been invited as visiting professor in several universities in China, Peru, Brazil and Chile. In September 2009, he became Lecturer at the Department of Physical Chemistry of the Faculty of Chemistry (UB), carrying out his research with Prof. Enric Brillas at the Laboratory of Electrochemistry of Materials and the Environment (LEMMA Group). Since September 2014, he has been working as an Assistant Professor at the same Department. His research interests mainly focus on all aspects of environmental electrochemistry for wastewater treatment, with major efforts devoted to the development of electrodes, catalysts and reactors for electrochemical advanced oxidation processes, filing two patents and working as advisor in industry-funded projects. With over 200 indexed scientific articles, more than 195000 citations (h-66), and several awards from ISE, RSEQ, SIBAE and WPEE, he is currently among the 2% most cited and influencing authors in the world. He is the Secretary (former Treasurer) of the Electrochemistry Group of the Spanish Royal Society of Chemistry, as well as current Vice-Chair and elected Chair of ISE Division 5.
Dr. Sonia Lanzalaco is a Chemical Engineer and Ph.D. by the Università degli Studi di Palermo (UniPA, Italy). Her research interests are focused on materials science and polymer technology, having wide expertise in materials synthesis and characterization, as well as in supercritical and electrochemical methods. In 2016, she obtained her Ph.D. Degree in Chemical and Materials Engineering (co-funded by LIMA Corporate) at UniPA. During her Ph.D., she spent a 4-month period as Visiting Researcher at Carnegie Mellon University in Pittsburgh (USA) under the supervision of world-renowned Prof. Dr. Krzysztof Matyjaszewski (ATRP polymerization). She has collaborated with Prof. Giuseppe Storti (ETH-Zurich), Prof. Armando Gennaro (Università di Padova, Italy) and Prof. Ignasi Sirés (Universitat de Barcelona, UB, Spain). In 2018, she obtained a prestigious individual fellowship under the Marie Sklodowska-Curie Actions (MSCA) call funded by the H2020 program. As MSCA postdoctoral researcher at the Innovation in Materials and Molecular Engineering (IMEM) group of the Universitat Politècnica de Catalunya (UPC), she led the project entitled 4D-POLYpropylene meshes as SENsitive motion SEnsors (4D-POLYSENSE). She worked in close collaboration with the global company BBraun Surgical S.A. (6-month secondment), developing innovative and smart polymer-based materials for hernia repair. Currently, she is a Lecturer and Senior Researcher at IMEM group (Prof. C.Alemán) and actively participates in several research projects and student supervision and training. Her current research agenda includes the preparation of: (i) smart platforms for electrochemical sensor devices, (ii) new in vitro detection and sterilization methods for bioengineering applications, and (iii) biomass-based polymers for health and environmental applications.
Emmanuel Mousset has completed his Erasmus PhD in Environmental Science and Technology in 2013 delivered by University of Paris-Est (France), University of Cassino (Italy) and UNESCO-IHE (The Netherlands), followed by post-doc positions in National University of Singapore (NUS) and Helmholtz Center for Environmental Research (Leipzig, Germany). He is currently Senior Researcher at the French National Scientific Research Center (CNRS) since 2016. His main scientific and technological contributions are in electrochemical engineering (e.g., reactor design and engineering, sizing), (electro)-chemical kinetics and reactivity, as well as electrode/electrolyte interfaces studies. He has been awarded with the young investigator price in 2022 by the French Electrochemical Group from the French Chemical Society, the Carl Wagner Medal of Excellence in Electrochemical Engineering in 2020 from the Electrochemical engineering group of the European Federation of Chemical Engineering (EFCE), as well as the Green Electrochemistry Prize in 2018 from the International Society of Electrochemistry (ISE) and Elsevier.
Sylwin Pawlowski holds a PhD degree in Chemical Engineering from Universidade NOVA de Lisboa (2015). Since February 2011, he has been developing his research at the Laboratory of Membrane Processes, first as a PhD student, followed by a Postdoc position at iBET, a Postdoctoral Research Associate position at the University of Edinburgh (Scotland/UK), and currently as an Assistant Researcher at NOVA, a position earned in a very prestigious CEEC IND call.
His main area of interest is experimental and modelling work on membranes and electromembrane processes, one of the most sustainable chemical processes for power generation, water desalination and resource recovery. His research activities so far comprise recovery/recycling of lithium from brines/end-of-life Li-ion batteries, electrospinning, 3D printing, sustainable power generation by reverse electrodialysis, membrane profiling, membrane fouling, flow capacitive deionisation, brackish water desalination, digital twins, machine learning and computational fluid dynamics (CFD).
Dr. William Tarpeh is an assistant professor of chemical engineering at Stanford University. The Tarpeh Lab uses catalysis and separations to advance wastewater refining, which generates tunable portfolios of products from water pollutants. In addition to improving mechanistic understanding of novel materials and processes, the group also advances wastewater treatment in resource-constrained communities to improve access to water, fertilizers, and chemical commodities. Will completed his B.S. in chemical engineering at Stanford, his M.S. and Ph.D. in environmental engineering at UC Berkeley, and postdoctoral training at the University of Michigan. His recent awards include the NSF CAREER Award, Dreyfus Teacher-Scholar Award, AIChE 35 Under 35 and the Environmental Division Early Career Award, and the Electrochemical Society Young Investigator Fellowship.
Dr. Trócoli got his Ph. D based on developing materials for Li-ion batteries at the University of Cordoba in 2012. He started his postdoctoral career by joining the Bochum Universität (Prof. La Mantia). Firstly, working in aqueous batteries, developing the first Zn-ion battery based on CuHCF; lately, he got involved in other fields, including his first works in Li selective and exclusion electrodes, as well as in an industrial project with Bayer MaterialsScience – reactor design. Dr. Trócoli started a collaboration with Prof. Alfred Ludwig to develop thin-film cathodes by RF-Magnetron sputtering, his first incursion in all-solid-state batteries. In January 2016, he joined the Nanoionics and fuel cell group (IREC, Spain, Prof. Tarancón - H2020 “Sinergy” project), working in thin film deposition methods. He developed a new multi-target technique and fabricated, among others, the first double-ion micro battery based on a Li intercalation cathode and a Zn metal anode. In September 2017, Dr. Trócoli started as a Marie Curie fellow in the group of Prof. Palacín (ICMAB-CSIC). Lately, he joined the FET-H2020 project E-Magic, working on novel cathodes for Mg batteries and nitride materials. In 2020, Dr. Trócoli obtained an EMERGIA project (Junta de Andalucía) and a JIN project (Retos-2020) for the development of new materials for Li extraction starting in November 2021 as a senior researcher at the University of Cordoba. Currently, Dr. Trócoli works as a Ramón y Cajal researcher at the University of Córdoba. He led several national and regional projects on battery recycling and post-lithium ion batteries.
Minghua ZhouProfessor Louis de Smet holds a personal chair on Advanced Materials & Interfaces at Wageningen University, The Netherlands.