This symposium welcomes submissions on numerical simulation and modeling of emerging technologies in photovoltaic (solar) cells and light-emitting devices. The emphasis is on applications and fundamental explanations of the charge and photon dynamics that underlie the operation of opto-electronic devices for energy-related purposes. Topics of interest include drift-diffusion techniques, optical simulations, machine learning, data management strategies, numerical approaches for device optimization and design, and more. The idea is to bridge the gap between theoreticians and experimentalists, paving the way for more efficient optimization strategies.
- Photovoltaic (solar) cells, including organics, perovskites, dye-sensitized, etc.
- Light-emitting devices (OLED, PeLED, QLED)
- Numerical device modelling and simulation
- Software, methodologies, codes, etc.
- Machine learning methods
Juan A. Anta is Full Professor of Physical Chemistry at the University Pablo de Olavide, Seville, Spain. He obtained a BA in Chemistry in the Universidad Complutense of Madrid (Spain) and carried out his PhD research at the Physical Chemistry Institut of the National Research Council of Spain. His research focuses on fundamental studies of energy photoconversion processes, especially on dye and perovskite solar cells, using numerical simulation and modelling tools, as well as advanced optoelectronic characterization techniques such as impedance spectroscopy and other small perturbation techniques.
Sandheep Ravishankar is currently a team leader in the photovoltaics department (IMD-3) at Forschungszentrum Jülich, Germany. He is interested in all aspects of the characterization and simulation of the device physics in perovskite single-junction and tandem solar cells. He uses a combination of electrical methods, luminescence methods and drift-diffusion simulations for this purpose, followed by the development of analytical or semi-analytical models for parameter estimation.