Sustainability is the fundamental motivation to develop metal halide perovskite photovoltaic, as the rapid expansion of solar cell technologies is crucial for climate change mitigation. The symposium serves as a platform to discuss the manyfold aspects of sustainability in perovskite PV research, manufacturing, operation, and end-of-life. This includes strategies to overcome environmental and health issue, e.g. related to solvent and lead toxicity, life cycle and supply criticality assessments, or recycling with the perspective of a circular economy.
- Environmental impact and LCA of halide perovskite materials and devices
- On-device Pb sequestration
- Recycling and recovery of halide perovskite materials and devices
- Pb-free halide perovskites
- Green manufacture of halide perovskite devices
- Economic sustainability and supply criticalities
Jason Baxter
Dr. Annalisa Bruno is an Associate Professor Nanyang Technological University (ERI@N), coordinating a team working on perovskite solar cells and modules by thermal evaporation. Annalisa is also a tenured Scientist at the Italian National Agency for New Technologies, Energy, and Sustainable Economic Development (ENEA). Previously, Annalisa was a Post-Doctoral Research Associate at Imperial College London. Annalisa received her B.S., M.S., and Ph.D. Degrees in Physics from the University of Naples Federico II. Her research interests include perovskite light-harvesting and charge generation properties and their implementation in solar cells and optoelectronic devices.
Rodrigo García
Christina Kamaraki
Francesco Vanin
Kai Zhu is currently a senior scientist in the Chemistry and Nanoscience Center at the National Renewable Energy Laboratory (NREL). He received his PhD degree in physics from Syracuse University in 2003. Before this position, he worked as a postdoctoral researcher in the Basic Science Center at NREL, focusing on fundamental charge carrier conduction and recombination in photoelectrochemical cells, especially dye-sensitized solar cells. Dr. Zhu’s research on dye-sensitized solar cells involves the development of advanced electrode materials/architectures, basic understanding of charge transport and recombination processes in these electrodes, and thin-film solar cell development/characterization/modeling. His recent research has centered on both basic and applied research on perovskite solar cells, including perovskite material development, device fabrication and characterization, and basic understanding of charge carrier dynamics in these cells. In addition to solar conversion applications, his research interests have also included III-Nitride wide-bandgap semiconductors for high-power blue and UV light emitting diodes and ordered nanostructured electrodes for Li-ion batteries and supercapacitors.