Metal halide perovskites have emerged as outstanding materials for optoelectronics, for example leading to unprecedented gains in the power conversion efficiency of solar cells. This rise has been enabled by the unconventional physics and chemistry of these materials which is still being unravelled. Deep insights into their unusual behaviour are crucial to keep advancing metal halide perovskites towards their potential and ultimately commercial reality. Understanding these materials requires advanced chararacterisation techniques which span optical & photoemission spectroscopies to in-situ structural measurements and computational insights.
This symposium invites contributions related to the advanced characterisation of metal halide perovskites for optoelectronic applications, including solar cell, light emission technologies and beyond. It serves as a valuable gathering of experts and researchers in the field, providing a platform for sharing the latest insights and methods that can advance perovskite-based technologies. The diversity of speakers, including physicists, chemists, engineers, and materials scientists, underscores the interdisciplinary nature of this research. This symposium aims to facilitate discussions on recent progress and challenges that have been highlighted by the latest characterisation techniques. We hope that this gathering of researchers can accelerate the practical use of these materials in sustainable energy and lighting technologies.
- Optical spectroscopy: charge-carrier dynamics (transient absorption, optical-pump terahertz-probe, etc), spatially-resolved techniques, polarons, etc.
- Electronic structure: studied via photoemission spectroscopies and/or computational methods
- In-situ Structural Measurements
- Electrical characterisation of perovskites
- Advanced microscopy techniques
Dr Juliane Borchert is the head of the junior research group “Optoelectronic Thin Film Materials” at the University of Freiburg as well as the head of the research group “Perovskite Materials and Interfaces” at the Fraunhofer Institute for Solar Energy Systems. She studied physics in Berlin, Groningen, and Halle (Saale). Her PhD research was conducted at the University of Oxford where she focused on co-evaporated perovskites for solar cells. She continued this research as a postdoctoral researcher at the University of Cambridge and AMOLF research institute in Amsterdam. Now she leads a team of researchers and technicians who are on a mission to develop the next generation of solar cells combining novel metal-halide perovskite semiconductors and established silicon technology into highly efficient tandem solar cells.
Dr Alex Ramadan is a Lecturer in the Department of Physics at the University of Sheffield. Alex did her PhD research at Imperial College London exploring the structure-property relationships of molecular semiconductor thin films. Following this she moved into perovskite semiconductor research for her postdoctoral work at the University of Oxford. At Sheffield she leads the New and Emerging Semiconductor Group and their research looks to develop and understand new semiconductor materials for next generation optoelectronic and devices.
Petra Cameron is an associate professor in Chemistry at the University of Bath.
Jacky Even was born in Rennes, France, in 1964. He received the Ph.D. degree from the University of Paris VI, Paris, France, in 1992. He was a Research and Teaching Assistant with the University of Rennes I, Rennes, from 1992 to 1999. He has been a Full Professor of optoelectronics with the Institut National des Sciences Appliquées, Rennes,since 1999. He was the head of the Materials and Nanotechnology from 2006 to 2009, and Director of Education of Insa Rennes from 2010 to 2012. He created the FOTON Laboratory Simulation Group in 1999. His main field of activity is the theoretical study of the electronic, optical, and nonlinear properties of semiconductor QW and QD structures, hybrid perovskite materials, and the simulation of optoelectronic and photovoltaic devices. He is a senior member of Institut Universitaire de France (IUF).
Eva Herzig’s research interest focuses on the possibilities and limitations in the characterization of nanostructures in functional materials as well as how such nanostructures form and change as functions of external parameters. The examined materials range from organic molecules to nanostructured hybrid and inorganic systems. We examine processing-property relationships and the influence of external fields to investigate how the fundamental self-assembly processes influence the final material performance. To this end we exploit various scattering techniques to observe and control structure and function relationships in the examined materials in-situ. Using grazing incidence x-ray scattering we are particularly sensitive to nanostructures on flat surfaces and within thin films.
Saiful Islam is Professor of Materials Science at the University of Oxford. He grew up in London and obtained his Chemistry degree and PhD from University College London. He then worked at the Eastman Kodak Labs, New York, and the Universities of Surrey and Bath.
His current research focuses on understanding atomistic and nano-scale processes in perovskite halides for solar cells, and in new materials for lithium batteries. Saiful has received several awards including the 2022 Royal Society Hughes Medal and 2020 American Chemical Society Award in Energy Chemistry. He presented the 2016 BBC Royal Institution Christmas Lectures on the theme of energy and is a Patron of Humanists UK.
Sandheep Ravishankar is currently a team leader in the photovoltaics department (IMD-3) at Forschungszentrum Jülich, Germany. He is interested in all aspects of the characterization and simulation of the device physics in perovskite single-junction and tandem solar cells. He uses a combination of electrical methods, luminescence methods and drift-diffusion simulations for this purpose, followed by the development of analytical or semi-analytical models for parameter estimation.
Philip Schulz holds a position as Research Director for Physical Chemistry and New Concepts for Photovoltaics at CNRS. In this capacity he leads the “Interfaces and Hybrid Materials for Photovoltaics” group at IPVF via the “Make Our Planet Great Again” program, which was initiated by the French President Emmanuel Macron. Before that, Philip Schulz has been a postdoctoral researcher at NREL from 2014 to 2017, and in the Department of Electrical Engineering of Princeton University from 2012 to 2014. He received his Ph.D. in physics from RWTH Aachen University in Germany in 2012.