Photoelectrochemical water splitting or CO2 reduction present two approaches of using renewable resources and abundant feedstocks (water and CO2) for the processing of fuels and valuable chemicals. This symposium will provide a platform for discussion of research on photoelectrochemical water splitting and CO2 reduction with a focus on degradation, longevity, robustness, stability and reliability of such devices and the materials used. The underlying process presents many challenges, including photoabsorber and co-catalyst design, branching mechanisms leading to degradation, challenges in managing multi-physical transport, and development of reactors for conversion with high stability while maintaining high efficiency. This symposium will feature recent progress in addressing these challenges by approaches spanning catalyst design, operando methods for characterization, and device engineering, covering computational as well as experimental methods.
ORAL CONTRIBUTION PRIZE
🏅 Best Oral Contribution prize valued at 150€
🏅 2nd Best Oral Contribution prize valued at 100€
🏅 3rd Best Oral Contribution prize valued at 50€
POSTER PRESENTATION PRIZE:
🏅 Best Poster Presentation prize valued at 150€
🏅 2nd Best Poster Presentation prize valued at 100€
🏅 3rd Best Poster Presentation prize valued at 50€
- Ab-initio investigation of degradation.
- Degradation mechanisms.
- Degradation characterization.
- Design and implementation of stable devices.
Sophia Haussener is a Professor heading the Laboratory of Renewable Energy Science and Engineering at the Ecole Polytechnique Federale de Lausanne (EPFL). Her current research is focused on providing design guidelines for thermal, thermochemical, and photoelectrochemical energy conversion reactors through multi-physics modelling and experimentation. Her research interests include: thermal sciences, fluid dynamics, charge transfer, electro-magnetism, and thermo/electro/photochemistry in complex multi-phase media on multiple scales. She received her MSc (2007) and PhD (2010) in Mechanical Engineering from ETH Zurich. She was a postdoctoral researcher at the Joint Center of Artificial Photosynthesis (JCAP) and the Lawrence Berkeley National Laboratory (LBNL) between 2011 and 2012. She has published over 70 articles in peer-reviewed journals and conference proceedings, and 2 books. She has been awarded the ETH medal (2011), the Dimitris N. Chorafas Foundation award (2011), the ABB Forschungspreis (2012), the Prix Zonta (2015), the Global Change Award (2017), and the Raymond Viskanta Award (2019), and is a recipient of a Starting Grant of the Swiss National Science Foundation (2014).


Joel W. Ager III is a Senior Staff Scientist in the Materials and Chemical Sciences Divisions of Lawrence Berkeley National Laboratory (LBNL) and an Adjunct Professor in the Materials Science and Engineering Department, UC Berkeley. He is a Principal Investigator in the Electronic Materials Program and the Program Lead for the Liquid Sunshine Alliance (LiSA) at LBNL. He graduated from Harvard College in 1982 with an A.B in Chemistry and from the University of Colorado in 1986 with a PhD in Chemical Physics. After a post-doctoral fellowship at the University of Heidelberg, he joined Lawrence Berkeley National Laboratory in 1989. His research interests include the discovery of new photoelectrochemical and electrochemical catalysts for solar to chemical energy conversion, fundamental electronic and transport properties of semiconducting materials, and the development of new types of transparent conductors. Professor Ager is a Fellow of the Royal Society of Chemistry and is a frequent invited speaker at international conferences and has published over 400 papers in refereed journals. His work is highly cited, with over 46,000 citations and an h-index of 111 (Google Scholar).
Doing my BSc/MSc in Physics and PhD in an interdisciplinary program crossing the disciplines like Chemical Engineering, Nanotechnology, and Electrochemistry made me who I am today – a scientist who enjoys the challenge of multifaceted research.
I enjoy doing basic research in order to solve applied tasks. This explains my research interest in fundamental physical chemistry, e.g. oxidation and dissolution of metals and semiconductors, electrocatalysis, and electrochemistry at modified interfaces but also electrochemical engineering, e.g. development and optimization of catalyst layers in fuel cells and water electrolyzes.
Progress in basic research is often a direct outcome of previous achievements in experimental instrumentation. Hence, a significant part of my interest is in the development of new tools, e.g. electrochemical on-line mass spectrometry, gas diffusion electrode approaches, and high-throughput screening methods.
Dr. Deutsch has been studying photoelectrochemical (PEC) water splitting since interning in Dr. John A. Turner’s lab at NREL in 1999 and 2000. He performed his graduate studies on III-V semiconductor water-splitting systems under the joint guidance of Dr. Turner and Prof. Carl A. Koval in the Chemistry Department at the University of Colorado Boulder.
Todd officially joined NREL as a postdoctoral scholar in Dr. Turner’s group in August 2006 and became a staff scientist two years later. He works on identifying and characterizing appropriate materials for generating hydrogen fuel from water using sunlight as the only energy input. Recently, his work has focused on inverted metamorphic multijunction III-V semiconductors and corrosion remediation strategies for high-efficiency water-splitting photoelectrodes. Todd has been honored as an Outstanding Mentor by the U.S. Department of Energy, Office of Science nine times in recognition of his work as an advisor to more than 30 students in the Science Undergraduate Laboratory Internship (SULI) program at NREL.
Dr Eslava leads a cutting-edge research group focused on the development of novel synthesis approaches for (photo)electrochemical and (photo)catalytic materials. His team's work involves exploring a wide range of materials, including transition metal oxides, halide perovskites, organic bulk heterojunctions, oxide perovskites, and graphene derivatives. By conducting comprehensive physicochemical and electrochemical characterizations, they aim to link material properties to practical applications, particularly in the field of energy conversion. Their research has significant interdisciplinary reach, spanning chemical engineering, chemistry, physics, and materials science. Dr Eslava's research contributions have been widely recognized, with over 85 publications in leading journals like Nature Energy, Advanced Materials, Energy & Environmental Science, and Nature Communications. He has been awarded prestigious funding from organizations such as The Royal Society, the Royal Society of Chemistry, EPSRC, and Innovate UK. His innovative contributions to the field earned him the Warner Medal from the Institution of Chemical Engineers for his impactful research and dissemination efforts.
Verena Streibel studied Materials Science at the Technical University of Darmstadt (2007-2013). She completed her doctoral studies at the Fritz Haber Institute of the Max Planck Society, focusing on in situ X-ray spectroscopy during electrochemical water splitting (2016). For her postdoctoral studies, she joined the SUNCAT Center for Interface Science and Catalysis at Stanford University (2018-2020), specializing in density functional theory-based microkinetic modeling of heterogeneous catalysis. In 2021, she joined the Walter Schottky Institute of the technical University of Munich, where she has been leading a BMBF Junior Research Group on artificial photosynthesis since 2024.
Verena's research focuses on surface and interface investigations to elucidate dynamic material changes during (photo)electrochemical processes for energy conversion. To this end, she combines (X-ray) spectroscopy methods under reaction conditions with theoretical modeling. With her research group, she develops thin-film photoelectrode materials and couples them to catalyst systems for solar fuels synthesis.