Organic mixed ionic-electronic conductors (OMIEs) can transport both ionic and electronic charges and are therefore ideal candidates for electrochemical devices. Those include electrochromic displays, energy-storage systems (batteries, supercapacitors) and organic electrochemical transistors (OECTs), enabling exciting new opportunities for energy harvesting/storage, biomedical applications, and neuromorphic computing. This symposium provides a forum for discussing interdisciplinary research in organic ionic, electronic, and mixed ionic-electronic conductors. The emphasis will be on the following:
1. Provide a theoretical framework for the wide range of ionic, electronic, and mixed ionic-electronic transport processes in organic materials.
2. Understand the fundamental mechanisms of electrochemical doping processes in organic electronic devices.
3. Explore the impact of chemical functionality, (macro)molecular structure, and film morphology on ionic, electronic, and mixed ionic-electronic transport.
4. Discuss the challenges and opportunities for in-operando characterization of organic mixed ionic-electronic conductors, including spectroscopy, scattering, microbalance, microprobe, and electron microscopy.
ORAL CONTRIBUTION PRIZES
🏅 Best oral presentation prize valued as a free 1 year RSC membership (valued at £105) and social media promotion on their platforms from RSC journal Journal of Materials Chemistry C
🏅 Best oral presentation prize valued as a free 1 year RSC membership (valued at £105) and social media promotion on their platforms from RSC journal Materials Horizons.
Supported by:
- Electrical/electrochemical doping
- Structure-property relationships
- In-operando characterization
- Charge transport theory
Olivier joined ICPEES as independent young researcher (Chargé de Recherche) in February 2023. His interests are in understanding the chemical and electrochemical doping mechanisms of highly anisotropic and porous organic semiconductors for bioelectronic and thermoelectric applications. A physicist by training, he obtained his MSc in Nanoscience and Engineering Physics at the Grenoble Institute of Technology (Phelma, France) in partnership with Imperial College London (UK). To better understand the molecular design of the materials he was studying, he completed a PhD at Université Grenoble Alpes/CEA Grenoble (France) with Dr. Renaud Demadrille from 2016 to 2019. He focused on the organic synthesis of n-type polymers and their doping for thermoelectric and photovoltaic applications. From 2020 to 2023, he developed his skills in time-resolved spectroscopy and data analysis during a post-doctoral stay in the FemtoMat group of Prof. Natalie Banerji at the University of Bern. Notably, he improved the electronic performance of organic electrochemical transistors (OECTs) and identified energetical and morphological factors limiting the (de)doping kinetics of the polymer channel during device operation.
Loren G. Kaake is an Associate Professor of Chemistry at Simon Fraser University located in British Columbia, Canada. He obtained a B.A. in Chemistry from Saint John's University (MN) in 2003 and a Ph.D. in Chemical Physics from the University of Minnesota in 2009. He was a postdoctoral fellow in the lab of Xiaoyang Zhu at the University of Texas in the department of Nanoscience and Engineering for 1.5 years before joining the lab of Alan J. Heeger at the University of California, Santa Barbara as a postdoctoral fellow. He began his independent career in 2014 at Simon Fraser University, and was promoted to Associate Professor in 2020.
Dr. Nicolas Leclerc received his PhD from the Pierre and Marie Curie University (Paris, France) in 2003. After completing his post-doctoral research at Laval University in Mario Leclerc's team (Québec, Canada), he joined the Institute of Chemistry and Processes for Energy, Environment and Health (ICPEES) of the University of Strasbourg (France) as a CNRS researcher in 2005. He has been appointed research director in 2020. He is the Head of the organic electronic team at ICPEES. His research interests focus on the development of new molecular and macromolecular organic semiconductor materials and their applications in optoelectronics.
Wouter Maes got his PhD in Chemistry with Professor Wim Dehaen at the Katholieke Universiteit (KU) Leuven (Belgium) in 2005. After post-doctoral stays at the KU Leuven (postdoc of the Research Foundation – Flanders, FWO; with Professor Wim Dehaen), the Université Pierre et Marie Curie, Paris (with Professor Eric Rose) and Oxford University (with Professor Harry Anderson), he became Assistant Professor at Hasselt University in 2009, where he was promoted to Associate Professor in 2014, Professor (Hoogleraar) in 2018, and Full Professor (Gewoon Hoogleraar) in 2021. His research activities deal with the design and synthesis of organic semiconducting materials (with an emphasis on conjugated polymers) and their application in organic electronic devices (organic solar cells, photodetectors, transistors, light-emitting diodes) and advanced healthcare, pursuing rational structure-property relations (see https://www.uhasselt.be/DSOS). These activities are generally combined with more in-depth materials and device physics studies within the framework of the Institute for Materials Research (imo-imomec) of Hasselt University.
Tom van der Pol is a Marie Curie fellow at the Laboratory of Organic Electronics within the Linköping University in Sweden. His research interests revolve around characterization of novel semiconductors, currently focused on organic mixed ion-electron conductors. He conducted his PhD research at the group of René Janssen studying optical characterization of thin film organic and perovskite semiconductors for solar cell applications.