Electrocatalysis is a blooming field, and electrochemical devices such as fuel cells and electrolyzers promise to help tackle major energetic and environmental challenges. Computational and theoretical tools are already available (or being developed) to understand and deconvolute complex phenomena at electrochemical interfaces and guide the design of enhanced electrode materials. This symposium aims to gather consolidated and up-and-coming scientists to present and discuss the latest developments in computational modelling of CO electroreduction, O reduction and evolution, hydrogen evolution, and nitrogen cycle electrocatalysis. Contributions with a focus on electrocatalytic materials design, machine learning, adsorbate solvation, applied potential, electrolyte and pH effects, electrochemical reaction kinetics, double-layer effects, and related concepts, are welcome in this symposium.
🏅 Best Oral Contribution prize valued at 150€ Tango Card from ChemPhysChem
- CO2 electroreduction
- O2 electrocatalysis
- Nitrogen cycle electrocatalysis
- Hydrogen evolution
- Computational methods
Giancarlo Cicero received a M.S. degree in Chemistry from the University of Torino in 1997 and obtained a Ph.D. in Physics from the Politecnico di Torino in 2003. In 2004, he worked as a postdoctoral fellow at the Lawrence Livermore National Laboratory, where he studied the properties of water in confined media. Since October 2008, he has been working at the Politecnico di Torino, where he is now a full professor in the Structure of Matter. His research activity is devoted to ab initio simulations of surfaces, interfaces, and nanostructured materials with applications in renewable energy systems and sustainable processes.
Dr. Samira Siahrostami is an Associate Professor and Canada Research Chair in the Department of Chemistry at Simon Fraser University in Canada. Prior to that, she was an associate professor (2022-2023) and assistant professor (2018-2022) in the Department of Chemistry at the University of Calgary. Prior to that, she was a research engineer (2016–2018) and postdoctoral researcher (2014–2016) at Stanford University's Department of Chemical Engineering. She also worked as a postdoctoral researcher at the Technical University of Denmark from 2011 to 2013. Her work uses computational techniques such as density functional theory to model reactions at (electro)catalyst surfaces. Her goal is to develop more efficient catalysts for fuel cells, electrolyzers, and batteries by comprehending the kinetics and thermodynamics of reactions occurring at the surface of (electro)catalysts. Dr. Siahrostami has written more than 100 peer-reviewed articles with an h-index of 47 and over 13,000 citations. She has received numerous invitations to give talks at universities, conferences, and workshops around the world on various topics related to catalysis science and technology. Dr. Siahrostami is the recipient of the Environmental, Sustainability, and Energy Division Horizon Prize: John Jeyes Award from the Royal Society of Chemistry (RSC) in 2021. She received the Tom Zeigler Award and the Waterloo Institute in Nanotechnology Rising Star award in 2023. She has been named as an emerging investigator by the RSC in 2020, 2021 and 2022. Dr. Siahrostami's contribution to energy research was recognized in the most recent Virtual Issue of ACS Energy Letters as one of the Women at the forefront of energy research in 2023. She is currently the board member of the Canadian Catalysis Foundation and editor of Chemical Engineering Journal (CEJ) and APL Energy journal (AIP Publishing).