Organic and inorganic nanostructured materials that enhance light-matter coupling can open new pathways for controlling charge, spin, light, and photochemical processes.
Generally, functional nanostructured materials are at the heart of technologies needed for a sustainable energy future. Their use covers green energy production in photovoltaics, renewable fuels, and more efficient energy consumption: for example in light-emitting applications and future information processing technologies.
Far less explored, yet extremely promising, are chiral nanomaterials and plasmonic nanostructures.
This symposium aims to facilitate cross-talk between the various research fields concerned with chiral functional nanomaterials. It will focus on the fundamental mechanisms relating the structures to the properties of chiral organic and inorganic materials, plasmonic cavities and metasurfaces for photochemistry, and topological materials.
Together as a community we aim to gain a deeper understanding of how these materials can unleash their full potential for device applications, and to uncover synergies by studying these fascinating materials from different backgrounds and characterization techniques, including optical, electrical, and electrochemical probes, from locally resolved materials studies to device-level measurements.
We will bring together leading nano-scientists interested in chiral optoelectronics, plasmonics, synthesis and advanced characterization, computational modelling, to enhance our understanding of these fascinating and promising materials.
- Chiral inorganic and organic nanomaterials & plasmonic structures
- Ultrafast dynamics of plasmonic and chiral nanomaterials
- Metasurfaces for photochemistry
- Plasmonic nanocavities and strong coupling
- Photophysics of chiral small molecules, supramolecular self-assemblies and polymers
- Photophysics of chiral halide perovskites and related materials
- Nanomaterials for spintronics & quantum technologies
- Topological materials
Sascha is a Tenure-Track Assistant Professor in Physical Chemistry and Head of the Laboratory for Energy Materials at EPFL (Switzerland), while he is also maintaining strong ties with the Harvard community and in particular Winthrop House which he regularly visits as NRT and SCR member.
His team employs light-matter interactions to understand the next generation of soft semiconductors with the overarching goal of maximizing energy efficiency for a sustainable future by unlocking applications ranging from flexible light-weight solar cells & displays all the way to entirely new applications in quantum information processing.
Previously, he was a research group leader and Rowland Fellow at Harvard University. Before starting his lab at Harvard, Sascha studied Chemistry at Heidelberg University (Germany) and completed a PhD in Physics at the University of Cambridge (UK), where he subsequently worked as EPSRC Doctoral Prize Fellow.
Prof. Magalí Lingenfelder is a PI with an excellent track record and a passion for atomically controlled interfaces. Her work contributes to the design of new materials by elucidating chemical processes by Scanning Probe Microscopies and Surface Sensitive Spectroscopies, including dynamic (bio) molecular recognition processes at the liquid/solid interface.
She created and led for over 10 years the Max Planck-EPFL laboratory for Molecular Nanoscience at EPFL campus in Switzerland, and is currently leading the Helvetia Institute for Science and Innovation.
She studied physical and biological chemistry at the National University of Córdoba in Argentina. In 2003, she finished her MSc thesis at the Max Planck Institute for the Solid State Research (MPI-FKF in Stuttgart, Germany) with seminal contributions to the field of metal-organic coordination networks on solid surfaces. She continued with her doctoral studies in Physics, and received the Otto Hahn medal of the Max Planck Society in 2008 for the microscopic understanding of the chiral recognition process with submolecular resolution. In her quest to study molecular recognition going from 2D to 3D complex systems, she made postdoctoral stays at the Institute of Materials Sciences in Barcelona, and at the Molecular Foundry of the Lawrence Berkeley National Lab in the US.
She is a committed mentor who directed 4 MSc theses, 5 PhD theses, and 5 postdocs. She advocates for problem-oriented interdisciplinary research, by pioneering the emerging field of BioNanoarchitectonics. She led 5 international research consortiums, delivered over 50 invited presentations, and organized 9 conferences and 4 doctoral schools. She and her team had received multiple awards and international recognitions for their creative and rigurous work on molecular recognition, chirality and operando studies at catalytic interfaces. In 2018, the Royal Society of Chemistry included her work in the first collection “Celebrating Excellence in Research: 100 Women of Chemistry”.
Lucile Chassat
Emiliano is Professor in Experimental Physics and Energy Conversion at the Faculty of Physics, University of Munich (LMU), Germany and he is the academic lead of the Nanomaterials for Energy group. He is also a visiting researcher at the Materials Departments of both Tianjin University, China and Imperial College London, UK. Since 2024, Emiliano has been also elected as Associate Researcher at the TUM Catalysis Research Center (CRC) in Munich. Emiliano is also co-editor of the first book in Plasmonic Catalysis (Wiley, June 2021). He is also a member of the Editorial Board in several journals, including ACS Nano, ACS Energy Letters, Advanced Photonics Nexus and eScience.
Prashant K. Jain earned his PhD in physical chemistry working with M. A. El-Sayed at Georgia Tech, following which he was a postdoctoral fellow at Harvard University. After a Miller Fellowship at UC Berkeley, he joined the faculty of the University of Illinois Urbana-Champaign, where he is the G. L. Clark Professor of Physical Chemistry, a Professor in the Department of Chemistry, and a Professor in the Materials Research Laboratory. He is also a University Scholar and an Affiliate Faculty Member of Physics and the Illinois Quantum Information Science and Technology (IQUIST).
Prof Jain’s lab studies nanoscale light–matter interactions and energy conversion. His noteworthy contributions are discoveries of plasmon resonances in quantum dots and plasmonic redox catalysis. His collective work has been published in over 115 papers and cited over 32,000 times. He has been listed among Highly Cited Researchers by Clarivate Analytics and Elsevier Scopus.
Prashant is a Fellow of the American Physical Society, a Fellow of the Royal Society of Chemistry, a Fellow of the American Association for the Advancement of Science (AAAS), and a Kavli Fellow of the National Academy of Sciences. He serves on the editorial advisory boards of the Journal of the American Chemical Society and the Journal of Chemical Physics and has previously been an advisory board member of the Journal of Physical Chemistry and a member of Defense Science Study group (DSSG).
His work has been recognized, among other awards, by a Presidential Early Career Award in Science and Engineering, a Guggenheim Fellowship, the Leo Hendrik Baekeland award, the ACS Kavli Emerging Leader in Chemistry award, the ACS Akron Award, the ACS Unilever Award the Beilby medal, a Sloan Fellowship, an NSF CAREER award, and selection as MIT TR35 inventor and a Beckman Young Investigator.
Reiko Oda studied up to her undergraduate degree in Tokyo, then obtained her PhD in Physics from MIT. She was a postdoctoral fellow at Strasbourg University, then moved to Bordeaux University to start her own group and got the CNRS researcher position in 2000. Since 2023, she also works in AIMR, Tohoku University as a University Research Lead.
Her research focuses on multiscale design, synthesis, and application through molecular self-organization, particularly interested in the hierarchical chirality amplification mechanisms between molecular, supramolecular and mesoscopic chiral structures. Oda has been working on rare microstructures controlled by chiral nano-assemblies used as templates to create hybrid organic-inorganic nanostructures. This research involves the development of chiral nanomaterials with controllable morphology, considering their optical, mechanical, and biological applications.
Professor Erwin Reisner received his education and professional training at the University of Vienna (PhD in 2005), the Massachusetts Institute of Technology (postdoc from 2005-2007) and the University of Oxford (postdoc from 2008-2009). He joined the University of Cambridge as a University Lecturer in the Department of Chemistry in 2010, became a Fellow of St. John’s College in 2011, was appointed to Reader in 2015 and to his current position of Professor of Energy and Sustainability in 2017. He started his independent research programme on artificial photosynthesis (solar fuels) with the support of an EPSRC Career Acceleration Fellowship (2009-2015), which also received substantial early support by the Christian Doppler Laboratory for Sustainable SynGas Chemistry (2012-2019). In 2016, he received a European Research Council (ERC) Consolidator Grant to develop the field of semi-artificial photosynthesis (biohybrid systems for solar fuel synthesis) and has recently been awarded an ERC Advanced Grant (now funded by the UKRI underwrite scheme) on semi-biological domino catalysis for solar chemical production. He is the academic lead (PI) of the Cambridge Circular Plastics Centre (CirPlas; since 2019), where his team develops solar-powered valorisation technologies for the conversion of solid waste streams (biomass and plastics) to fuels and chemicals. He has acted as the academic lead of the UK Solar Fuels Network, which coordinates the national activities in artificial photosynthesis (2017-2021) and is currently a co-director of the Centre for Doctoral Training in Integrated Functional Nano (nanoCDT) in Cambridge as well as a member of the European research consortia ‘Sofia’ and ‘solar2chem'.