In the transition towards Net-Zero greenhouse gas emissions, there is significant interest in phasing out fossil fuels in the energy and chemical sectors. With a circular economy mindset, one attractive solution is producing fossil fuel alternatives from the accumulated waste stream, such as biomass from food and agriculture waste, plastic waste and polluted wastewater from industry. (Photo)electrochemical conversion has recently emerged as a promising avenue in this direction due to its sustainable process, eliminating the use of hazardous reagents, and low carbon emission when coupled with renewable energy sources. Currently, the design of efficient and stable catalyst materials, and the scaling up feasibility pose a bottleneck for commercialization. Therefore, this symposium invites contributions in scientific developments with atomistic level theory, fundamental electrochemistry, spectroscopy, materials synthesis, life-cycle and technoeconomic analysis that ultimately bring us a step closer towards establishing a Net-Zero circular economy.
- Biomass-to-chemical (glycerol, furfural, hydroxymethylfurfural, glucose, lignin, etc)
- (Photo)electrochemical biomass reforming for hydrogen production
- Methanol/ethanol fuel cells
- Plastic derived feedstock valorisation
- Combining waste feedstock oxidation with CO2 reduction
- Methane oxidation
- (Photo)electro-synthesis
- Wastewater treatment with (photo)electrocatalysis
Dr Hui Luo is an independent academic fellow in the School of Mechanical Engineering Sciences at the University of Surrey, UK. She is also a Fellow of the Institute for Sustainability, member of the Royal Society of Chemistry (MRSC) and member of the Institute of Materials, Minerals and Mining (MIMMM).
Dr. Luo obtained her PhD in Queen Mary University of London in 2019, working on carbon materials for solar hydrogen conversion. in Oct 2019 she moved to Imperial College London working as a research associate, developing biomass electrolyser for green hydrogen and bio-chemical co-production. In Sep 2022 she worked as a senior test engineering at Ceres, before taking the Surrey Future Fellowship and join Surrey in May 2023.
Her research interests include developing and up-scaling efficient electrolysis technologies to convert biomass and plastic wastes into green hydrogen and high-value commodity chemicals. Her expertise includes nanomaterials synthesis and characterisation, water electrolysis and fuel cell technologies, in operando Synchrotron X-ray absorption, surface enhanced Raman and FTIR spectroscopy, as well as gas and liquid chromatography.
Corina Andronescu received her B.Sc. and M.Sc. from the University Politehnica of Bucharest (Romania) in 2009 and 2011, respectively. Her Ph.D. title she received from the same university in 2014. In 2016 she joined the group of Prof. W. Schuhmann (Ruhr University Bochum, Germany) first as postdoctoral researcher and later as group leader. December 2018, she was appointed Junior Professor at the University of Duisburg-Essen, where she is currently leading the group of Electrochemical Catalysis in the Faculty of Chemistry. Her research interests include development of hybrid electrocatalysts for the CO2 electroreduction reaction, alcohol electrooxidation as well as investigation of electrocatalysts at nanoscale using Scanning Electrochemical Cell Microscopy.
Sixto Giménez (M. Sc. Physics 1996, Ph. D. Physics 2002) is Associate Professor at Universitat Jaume I de Castelló (Spain). His professional career has been focused on the study of micro and nanostructured materials for different applications spanning from structural components to optoelectronic devices. During his PhD thesis at the University of Navarra, he studied the relationship between processing of metallic and ceramic powders, their sintering behavior and mechanical properties. He took a Post-Doc position at the Katholiek Universiteit Leuven where he focused on the development of non-destructive and in-situ characterization techniques of the sintering behavior of metallic porous materials. In January 2008, he joined the Group of Photovoltaic and Optoelectronic Devices of University Jaume I where he is involved in the development of new concepts for photovoltaic and photoelectrochemical devices based on nanoscaled materials, particularly studying the optoelectronic and electrochemical responses of the devices by electrical impedance spectroscopy. He has co-authored more than 80 scientific papers in international journals and has received more than 5000 citations. His current h-index is 31.
Professor Erwin Reisner received his education and professional training at the University of Vienna (PhD in 2005), the Massachusetts Institute of Technology (postdoc from 2005-2007) and the University of Oxford (postdoc from 2008-2009). He joined the University of Cambridge as a University Lecturer in the Department of Chemistry in 2010, became a Fellow of St. John’s College in 2011, was appointed to Reader in 2015 and to his current position of Professor of Energy and Sustainability in 2017. He started his independent research programme on artificial photosynthesis (solar fuels) with the support of an EPSRC Career Acceleration Fellowship (2009-2015), which also received substantial early support by the Christian Doppler Laboratory for Sustainable SynGas Chemistry (2012-2019). In 2016, he received a European Research Council (ERC) Consolidator Grant to develop the field of semi-artificial photosynthesis (biohybrid systems for solar fuel synthesis) and has recently been awarded an ERC Advanced Grant (now funded by the UKRI underwrite scheme) on semi-biological domino catalysis for solar chemical production. He is the academic lead (PI) of the Cambridge Circular Plastics Centre (CirPlas; since 2019), where his team develops solar-powered valorisation technologies for the conversion of solid waste streams (biomass and plastics) to fuels and chemicals. He has acted as the academic lead of the UK Solar Fuels Network, which coordinates the national activities in artificial photosynthesis (2017-2021) and is currently a co-director of the Centre for Doctoral Training in Integrated Functional Nano (nanoCDT) in Cambridge as well as a member of the European research consortia ‘Sofia’ and ‘solar2chem'.
Pablo S. Fernández received his B.Sc (2006) and Ph.D. (2011) in the Research Institute of Theoretical and Applied Physical Chemistry (INIFTA) at the University of La Plata, La Plata, Argentina under the supervision of Profa. Maria E. Martins. During 2012-2014 he was a postdoctoral fellow at the same institution. In 2014 he joined the Electrochemistry Group at the Chemistry Institute of São Carlos, USP, where he worked as a Postdoc with Prof. Germano Tremiliosi-Filho until August of the same year when he was appointed Assistant Professor at the Chemistry Institute of the University of Campinas (UNICAMP). Between 2010 and 2013 he visited the group of Prof. Giuseppe Câmara (UFMS-MS) where he worked intensively with FTIR in situ. From 07/2015 to 03/2016 he joined the Catalysis and Surface Chemistry Group, at the University of Leiden (The Netherlands) working under the supervision of Prof. M.T.M. Koper. He is currently an Associate Professor at Unicamp, head of the Campinas Electrochemistry Group (CampEG) and an active member at the Center for Innovation on New Energies (CINE). He was the Director of the Physical Chemistry Division of SBQ (Brazilian Chemical Society, 2020-2022). Since 2020 is the Brazilian representative of the SIBAE (Ibero-American Society of Electrochemistry). His research focuses on fundamental aspects of electrochemistry and electrocatalysis with an emphasis on the use and development of in situ characterization tools.
Kevin Sivula obtained a PhD in chemical engineering from UC Berkeley in 2007. In 2011, after leading a research group in the Laboratory of Photonics and Interfaces at EPFL, he was appointed tenure track assistant professor. He now heads the Laboratory for Molecular Engineering of Optoelectronic Nanomaterials (http://limno.epfl.ch) at EPFL.