During the last few years, enormous efforts have been made in the understanding and development of solar chemical technologies, leading to important achievements in this field. The next step to implement these technologies as sustainable renewable alternatives is their scale-up and industrialization, representing a great challenge. This symposium is open to contributions on different routes towardssolar fuels generation using scaled-up technologies at an industrial level. It will cover topics from photoelectrocatalytic, photovoltaic, photocatalysis and concentrated solar power technologies. Additionally, contributions on the employment of Artificial Intelligence (A.I), Machine Learning and other digital technologies to ease and accelerate the lab-to-industry transition are also welcome.
Supported by:
- Photoelectrocatalysis
- Photovoltaics
- Photocatalysis
- Concentrated Solar Power
- Artificial photosynthesis
- Artificial Intelligence (A.I.) for accelerated scale-up
Dr. Miguel García Tecedor (MSc. Applied Physics, 2013, PhD. Physics 2017, both at the Complutense University of Madrid, UCM) is a Senior Assistant Researcher at the Photoactivated Processes Unit of IMDEA Energy. Miguel developed his PhD, focused on the growth and characterization of nanostructures and their possible applications, in the Physics of Electronic Nanomaterials group at the UCM. In 2015, he joined the Institute for Energy Technology (IFE), located in Kjeller, Norway, where he worked on the synthesis and characterization of organic-inorganic compounds for the passivation of silicon solar cells. In July 2017, Miguel began working at the Institute of Advanced Materials (INAM) of the Universitat Jaume I, where he worked on the development of novel materials and strategies for different (photo)electrochemical applications. In March 2021, Miguel joined IMDEA to continue his research focused on solar fuels generation. In 2023 he was awarded a Junior Leader La Caixa fellowship and the R3 certificate from the Spanish Research Agency. Recently, he was awarded with the Ramón y Cajal contract in the 2023 call.
Joel W. Ager III is a Senior Staff Scientist in the Materials and Chemical Sciences Divisions of Lawrence Berkeley National Laboratory (LBNL) and an Adjunct Professor in the Materials Science and Engineering Department, UC Berkeley. He is a Principal Investigator in the Electronic Materials Program and the Program Lead for the Liquid Sunshine Alliance (LiSA) at LBNL. He graduated from Harvard College in 1982 with an A.B in Chemistry and from the University of Colorado in 1986 with a PhD in Chemical Physics. After a post-doctoral fellowship at the University of Heidelberg, he joined Lawrence Berkeley National Laboratory in 1989. His research interests include the discovery of new photoelectrochemical and electrochemical catalysts for solar to chemical energy conversion, fundamental electronic and transport properties of semiconducting materials, and the development of new types of transparent conductors. Professor Ager is a Fellow of the Royal Society of Chemistry and is a frequent invited speaker at international conferences and has published over 400 papers in refereed journals. His work is highly cited, with over 46,000 citations and an h-index of 111 (Google Scholar).
Sixto Giménez (M. Sc. Physics 1996, Ph. D. Physics 2002) is Associate Professor at Universitat Jaume I de Castelló (Spain). His professional career has been focused on the study of micro and nanostructured materials for different applications spanning from structural components to optoelectronic devices. During his PhD thesis at the University of Navarra, he studied the relationship between processing of metallic and ceramic powders, their sintering behavior and mechanical properties. He took a Post-Doc position at the Katholiek Universiteit Leuven where he focused on the development of non-destructive and in-situ characterization techniques of the sintering behavior of metallic porous materials. In January 2008, he joined the Group of Photovoltaic and Optoelectronic Devices of University Jaume I where he is involved in the development of new concepts for photovoltaic and photoelectrochemical devices based on nanoscaled materials, particularly studying the optoelectronic and electrochemical responses of the devices by electrical impedance spectroscopy. He has co-authored more than 80 scientific papers in international journals and has received more than 5000 citations. His current h-index is 31.
Sophia Haussener is a Professor heading the Laboratory of Renewable Energy Science and Engineering at the Ecole Polytechnique Federale de Lausanne (EPFL). Her current research is focused on providing design guidelines for thermal, thermochemical, and photoelectrochemical energy conversion reactors through multi-physics modelling and experimentation. Her research interests include: thermal sciences, fluid dynamics, charge transfer, electro-magnetism, and thermo/electro/photochemistry in complex multi-phase media on multiple scales. She received her MSc (2007) and PhD (2010) in Mechanical Engineering from ETH Zurich. She was a postdoctoral researcher at the Joint Center of Artificial Photosynthesis (JCAP) and the Lawrence Berkeley National Laboratory (LBNL) between 2011 and 2012. She has published over 70 articles in peer-reviewed journals and conference proceedings, and 2 books. She has been awarded the ETH medal (2011), the Dimitris N. Chorafas Foundation award (2011), the ABB Forschungspreis (2012), the Prix Zonta (2015), the Global Change Award (2017), and the Raymond Viskanta Award (2019), and is a recipient of a Starting Grant of the Swiss National Science Foundation (2014).