Photo-driven or dark electrochemistry provides an interesting route to store renewable resources, generate fuels, and process energy-intense chemical commodities. This symposium invites contributions on the state of the field in electrochemical reduction of water, CO2, nitrogen and beyond, from the atomistic to the device and industrial scale.
Symposium topics span fundamental mechanistic studies, catalyst design, operando studies, membranes and ionomers, gas diffusion electrodes, membrane electrode assemblies, flow reactors, device engineering, modelling spanning all relevant length scales, relevant experimental and theoretical methods development, and technoeconomic analysis.
- Fundamental mechanistic kinetic and operando studies
- Design of new electrocatalysts
- New developments in modelling the electrochemical interface
- Mass transfer modelling of GDEs and MEAs
- Flow reactors for high-throughput electrocatalytic synthesis
- Industrial and commercial implementations
- Technoeconomic analysis
Sophia Haussener is a Professor heading the Laboratory of Renewable Energy Science and Engineering at the Ecole Polytechnique Federale de Lausanne (EPFL). Her current research is focused on providing design guidelines for thermal, thermochemical, and photoelectrochemical energy conversion reactors through multi-physics modelling and experimentation. Her research interests include: thermal sciences, fluid dynamics, charge transfer, electro-magnetism, and thermo/electro/photochemistry in complex multi-phase media on multiple scales. She received her MSc (2007) and PhD (2010) in Mechanical Engineering from ETH Zurich. She was a postdoctoral researcher at the Joint Center of Artificial Photosynthesis (JCAP) and the Lawrence Berkeley National Laboratory (LBNL) between 2011 and 2012. She has published over 70 articles in peer-reviewed journals and conference proceedings, and 2 books. She has been awarded the ETH medal (2011), the Dimitris N. Chorafas Foundation award (2011), the ABB Forschungspreis (2012), the Prix Zonta (2015), the Global Change Award (2017), and the Raymond Viskanta Award (2019), and is a recipient of a Starting Grant of the Swiss National Science Foundation (2014).
Prof. Aimy Bazylak is the Canada Research Chair in Thermofluids for Clean Energy and Professor in the Department of Mechanical and Industrial Engineering at the U of T. In 2011, she was awarded the I.W. Smith Award from the Canadian Society for Mechanical Engineering, and she received the Ontario Early Researcher Award in 2012. From 2015-2018, she served as the Director of the U of T Institute for Sustainable Energy. In 2015 she was named an Alexander Von Humboldt Fellow (Germany), and in 2019 she was named a Fellow of the American Society of Mechanical Engineers. In 2020, she was named a Helmholtz International Fellow (Germany), was awarded the U of T McLean Award, and was elected to the Royal Society of Canada College of New Scholars, Artists and Scientists.
Raffaella Buonsanti obtained her PhD in Nanochemistry in 2010 at the National Nanotechnology Laboratory, University of Salento. Then, she moved to the US where she spent over five years at the Lawrence Berkeley National Laboratory, first as a postdoc and project scientist at the Molecular Foundry and after as a tenure-track staff scientist in the Joint Center for Artificial Photosynthesis. In October 2015 she started as a tenure-track Assistant Professor in the Institute of Chemical Sciences and Engineering at EPFL. She is passionate about materials chemistry, nanocrystals, understanding nucleation and growth mechanisms, energy, chemical transformations.
Jillian Dempsey
Christopher Hahn
Feng JiaoMarc T.M. Koper is Professor of Surface Chemistry and Catalysis at Leiden University, The Netherlands. He received his PhD degree (1994) from Utrecht University (The Netherlands) in the field of electrochemistry. He was an EU Marie Curie postdoctoral fellow at the University of Ulm (Germany) and a Fellow of Royal Netherlands Academy of Arts and Sciences (KNAW) at Eindhoven University of Technology, before moving to Leiden University in 2005. His main research interests are in fundamental aspects of electrocatalysis, proton-coupled electron transfer, theoretical electrochemistry, and electrochemical surface science.