2D materials are already recognized as co-catalysts and electro-catalysts for the hydrogen evolution reaction. It was recently found that these robust and affordable materials can be used for other important catalytic reactions, such as the Oxygen Reduction Reaction (ORR) or the Nitrogen Reduction Reaction (N2RR). Understanding the synthesis-structure-activity relationship in these materials is therefore a topic of interest for the community.
This symposium invites contributes regarding the synthesis control, the optimization of catalytic sites and the application of these materials for a variety of reactions.
- Synthetic control over morphology, atomic structure and composition
- Catalytic activity – electro-catalysis and photocatalysis
- Structure-Function relationship in 2D materials


Prof. Zdenek Sofer is tenured professor at the University of Chemistry and Technology Prague since 2019. He received his PhD also at University of Chemistry and Technology Prague, Czech Republic, in 2008. During his PhD he spent one year in Forschungszentrum Julich (Peter Grünberg Institute, Germany) and also one postdoctoral stay at University Duisburg-Essen, Germany. Research interests of prof. Sofer concerning on 2D materials, its crystal growth, chemical modifications and derivatisation. His research covers various applications of 2D materials including energy storage and conversion, electronic, catalysis and sensing devices. He is an associated editor of FlatChem journal. He has published over 460 articles, which received over 15000 citations (h-index of 61).
Francesco BonaccorsoProf. Michal Otyepka, Ph.D. (*1975) is professor of physical chemistry and Head of CATRIN-RCPTM research division under roof of Palacký UniversityOlomouc and Head of Nanolab at IT4I Supercomputer center at Ostrava. His research interests cover physical-chemical properties and reactivity of graphene derivatives and 2D materials, non-covalent interactions to 2D materials. He has been developing chemistry of fluorographene (2D chemistry, 2Dchem.org) toward graphene derivatives, which can be applied in (bio)sensing, catalysis and energy storage. He specializes also in molecular dynamics of biomolecules, nanomaterials, and complex molecular systems, force field development and multiscale methods and their applications. He is principal investigator of ERC – Consolidator and Proof of Concept projects. He is the author or co-author of more than 300 papers in international journals, three book chapters and one book.
Ashwin Ramasubramaniam
Dr. Minghao Yu, PI, holds an independent research group (Materials & Electrochemistry for Sustainable Energy Storage) at Technische Universität Dresden. His research interest includes 1) the development of novel organic and inorganic 2D layered materials, 2) the investigation of advanced artificial interphases and electrolytes for next-generation batteries, 3) fundamental charge and ion dynamics during electrochemical energy storage processes, and 4) sustainable energy storage device fabrication, including supercapacitors, hybrid-ion capacitors, aqueous batteries, dual-ion batteries, and multivalent metal (Zn, Mg, Al) batteries. He has published more than 140 scientific articles which have attracted 23,000+ citations with an H-index of 76 (Web of Science). Besides, he is also an associated member of the Center for Advancing Electronics Dresden (cfaed), an associated group leader at Max-Planck-Institut für Mikrostrukturphysik, a highly cited researcher (Clarivate Analytics, 2018-now), 2023 ERC Starting Grant winner, and a Fellow of the Young Academy of Europe.
Yanfeng Zhang