The key to understanding, improving and using functional materials is a detailed investigation and interpretation of the underlying microscopic and nanoscopic structure, materials properties and dynamic effects. Therefore, microscopy techniques such as scanning probe-, electron- and optical microscopy are crucial tools. Recent advances in instrumentation and measurement techniques have enabled a detailed analysis of structure-function relationships in functional nanostructures. Properties such as local strain, the impact of grain boundaries on photoluminescence and charge transport, local chemical environments, time-resolved ionic movement and spatially-resolved charge carrier dynamics are being studied to better understand these materials and optimise their properties, which ultimately dictate device performance.
In this symposium we will discuss novel measurement approaches and advances in instrumentation that enable a deeper understanding of functional materials. A particular focus will be on in-situ and in-operando methods as well as approaches which combine and compare complementary techniques. A wide range of functional materials will be considered, for example those related to energy harvesting and storage applications, solid state catalysts, and domain wall electronics.
The aim is to bring together experts from different fields of microscopy on functional materials to stimulate discussions, cross-disciplinary learning and collaborations.
Sponsored by
- Scanning probe microscopy
- Optical microscopy and spectroscopy
- Electron microscopy
- Imaging
Stefan Weber (born 1981) studied Physics at the University of Konstanz. Already as an undergrad student he started to work with an SFM in the group of Prof. Leiderer. For his diploma thesis under the supervision of Prof. Dr. Johannes Boneberg he studied the interaction of gold nanoparticles with pulsed laser light. In 2007, he joined the group of Prof. Butt at the Max Planck Institute for Polymer Reaearch (MPI-P), Mainz. During his PhD, he spent six months at Seoul National University, Korea, in the groups of Prof. K. Char and Prof. C. Lee. In 2010 he received a joint doctoral degree from Mainz University and SNU. In 2011 he went to University College Dublin as a Feodor Lynen Fellow (Alexander von Humboldt Foundation) to join Prof. Brian Rodriguez and Prof. Suzi Jarvis. In 2012 he became a group leader in the Physics of Interfaces group in the department of Prof. Hans-Jürgen Butt at the Max Planck Institute for Polymer Research (MPI-P), Mainz. From 2015 to 2023 he held a junior professor postition in the Physics department of Mainz University. Sind June 2023, he is a permament group leader at the Institute for Photovoltaics at University Stuttgart, where he heads the Nanoscale Microscopy and Characterization group. In 2024, he won an ERC Consolidator grant for the development of a Photovoltaic Microscope that combines nanoscale electrical imaging with high-resolution optical microscopy and ultrafast spectroscopy
Prof. Rodriguez graduated from North Carolina State University (Raleigh, USA) with a PhD in Physics in 2003 and subsequently held postdoctoral appointments at North Carolina State University and at Oak Ridge National Laboratory and the Center for Nanophase Materials Sciences (Oak Ridge, USA). In 2007, he received an Alexander von Humboldt fellowship to conduct research at the Max Planck Institute of Microstructure Physics Halle, Germany). Brian joined University College Dublin in January, 2009 as a Lecturer in Nanoscience at the Conway Institute of Biomolecular and Biomedical Research. In October, 2011, he was appointed to the School of Physics.
Sascha is a Tenure-Track Assistant Professor in Physical Chemistry and Head of the Laboratory for Energy Materials at EPFL (Switzerland), while he is also maintaining strong ties with the Harvard community and in particular Winthrop House which he regularly visits as NRT and SCR member.
His team employs light-matter interactions to understand the next generation of soft semiconductors with the overarching goal of maximizing energy efficiency for a sustainable future by unlocking applications ranging from flexible light-weight solar cells & displays all the way to entirely new applications in quantum information processing.
Previously, he was a research group leader and Rowland Fellow at Harvard University. Before starting his lab at Harvard, Sascha studied Chemistry at Heidelberg University (Germany) and completed a PhD in Physics at the University of Cambridge (UK), where he subsequently worked as EPSRC Doctoral Prize Fellow.
Takeshi Fukuma
Libai Huang is currently a Professor of Chemistry at Purdue University. She received her B.S. from Peking University in 2001 and her Ph.D. from University of Rochester in 2006. She joined the Purdue faculty in 2014. Her research program is aimed at directly imaging energy and charge transport with femtosecond time resolution and nanometer spatial resolution to elucidate energy and charge transfer mechanisms. www.chem.purdue.edu/huang
Dr. Bryan D. Huey is a Professor and the Department Head of Materials Science and Engineering at the University of Connecticut (arrived 2004). This followed 18 months as an NRC fellow at NIST, 3 years as a postdoc at Oxford, a PhD at UPenn (1999), and a BS at Stanford, all working in the field of materials science emphasizing nanoscale materials property measurements. His research focuses on the development and application of advanced variations of AFM especially for measuring and mapping electronic, piezoelectric, photovoltaic, and mechanical properties at the nanoscale. He has nearly 150 publications, including articles in Science, Nature, and PNAS over the past 5 years. Huey was one of 5 co-organizers for the ~7000 attendee Fall 2019 MRS annual meeting, one of 3 co-organizers for the 2017 US-Japan Piezoelectrics and Dielectrics Symposium, and previously served as the Chair of the 1200+ member Basic Science Division of the American Ceramic Society. Huey is presently the 2nd Vice-Chair for the University Materials Council, the organization of MSE department heads in North America, in line to become the Chair in 2023.
Joseph M. Luther obtained B.S. degrees in Electrical and Computer Engineering from North Carolina State University in 2001. At NCSU he began his research career under the direction of Salah Bedair, who was the first to fabricate a tandem junction solar cell. Luther worked on growth and characterization high-efficiency III-V materials including GaN and GaAsN. His interest in photovoltaics sent him to the National Renewable Energy Laboratory (NREL) to pursue graduate work. He obtained a Masters of Science in Electrical Engineering from the University of Colorado while researching effects of defects in bulk semiconductors in NREL�s Measurements and Characterization Division. In 2005, He joined Art Nozik�s group at NREL and studied semiconductor nanocrystals for multiple exciton generation for which he was awarded a Ph.D. in Physics from Colorado School of Mines. As a postdoctoral fellow, he studied fundamental synthesis and novel properties of nanomaterials under the direction Paul Alivisatos at the University of California and Lawrence Berkeley National Laboratory. In 2009, he rejoined NREL as a senior research scientist. His research interests lie in the growth, electronic coupling and optical properties of colloidal nanocrystals and quantum dots.
Thomas Mayer
Ivan Scheblykin obtained Ph.D. in 1999 from Moscow Institute of Physics and Technology and Lebedev Physical Institute of Russian Academy of Sciences on exciton dynamics in J-aggregates. After a postdoctoral stay in the KU Leuven, Belgium, he moved to Sweden to start the single molecule spectroscopy group at the Division of Chemical Physics in Lund University where he became a full professor in 2014. His interests cover fundamental photophysics of organic and inorganic semiconductors and, in particular, energy transfer, charge migration and trapping. The general direction of his research is to comprehend fundamental physical and chemical processes beyond ensemble averaging in material science and chemical physics using techniques inspired by single molecule fluorescence spectroscopy and single particle imaging.
Elizabeth Tennyson