This symposium invites contributions on new challenges to enhance the performance of perovskite-based photovoltaic cells, light-emitting devices, and related optoelectronic devices for energy harvesting & production and optical information processing. It will further consider theoretical modelling of new materials or analytic approach to material and device degradation. Perovskite-like materials inspired from halide perovskite crystals will also be discussed in the scope of the symposium.
Sponsored by
- Perovskite and perovskite-inspired materials for solar cells, lightning and related optoelectronics
- Design principles and approaches for high-throughput screening for novel perovskite-inspired materials for LEDs and Solar Cells
- Efficiency limits of perovskite semiconductors for solar cells and LEDs
- Lower dimensional perovskites and other approaches for defect passivation and efficiency enhancement
- Process-rationalization and control for enhanced semi-conductor thin-film quality
Tsutomu (Tom) Miyasaka received his Doctor of Engineering from The University of Tokyo in 1981. He joined Fuji Photo Film, Co., conducting R&Ds on high sensitivity photographic materials, lithium-ion secondary batteries, and design of an artificial photoreceptor, all of which relate to electrochemistry and photochemistry. In 2001, he moved to Toin University of Yokohama (TUY), Japan, as professor in Graduate School of Engineering to continue photoelectrochemistry. In 2006 to 2009 he was the dean of the Graduate School. In 2004 he has established a TUY-based company, Peccell Technologies, serving as CEO. In 2005 to 2010 he served as a guest professor at The University of Tokyo.
His research has been focused to light to electric energy conversion involving photochemical processes by enhancing rectified charge transfer at photo-functional interfaces of semiconductor electrodes. He has contributed to the design of low-temperature solution-printing process for fabrication of dye-sensitized solar cells and solid-state hybrid photovoltaic (PV) cells. Since the discovery of the organic inorganic hybrid perovskite as PV material in 2006 and fabrication of high efficiency PV device in 2012, his research has moved to R&Ds of the lead halide perovskite PV device. He has promoted the research field of perovskite photovoltaics by organizing international conferences and by publishing many papers on enhancement of PV efficiency and durability, overall citation number of which is reaching more than 5,000 times. In 2009 he was awarded a Ministry of Science & Education prize on his achievements of green sustainable solar cell technology. In 2017 he received Chemical Society of Japan (CSJ) Award. He is presently directing national research projects funded by Japan Science and Technology Agency (JST) and Japan Aerospace Exploration Agency (JAXA).
I am an energetic, creative, female scientist with a solid expertise in Material Science and Technology. I have successfully implemented an engineering approach to guide the development of functional nanohybrids through general and simple routes. Throughout my work, I have introduced important mechanisms on the cooperative coupling of dissimilar materials in single structures, which represents a fundamental knowledge for the creation of a new-generation of nano and macro hybrid materials.
Eva Herzig’s research interest focuses on the possibilities and limitations in the characterization of nanostructures in functional materials as well as how such nanostructures form and change as functions of external parameters. The examined materials range from organic molecules to nanostructured hybrid and inorganic systems. We examine processing-property relationships and the influence of external fields to investigate how the fundamental self-assembly processes influence the final material performance. To this end we exploit various scattering techniques to observe and control structure and function relationships in the examined materials in-situ. Using grazing incidence x-ray scattering we are particularly sensitive to nanostructures on flat surfaces and within thin films.
Emil List-Kratochvil graduated from the Napier University Edinburgh with a first class BSc (Hons) in Applied Physics in 1996, followed by a first class Master Degree in 1998 and a first class degree of a Doctor Technicae in 2000, both from Graz University of Technology (TU Graz).
He received his Habilitation (Venia Docendi) in Solid State Physics in 2003 at TU Graz. At that time, he was a Christian-Doppler-Society funded Research Associate (2000-2007), directing a laboratory for “Advanced Functional Materials” focusing on an applied research agenda in collaboration with Industry. In 2004 he was appointed Associate Professor in Solid State Physics at TU Graz. In 2004 Professor List-Kratochvil was awarded the Fritz Kohlrauschpreis (ÖPG) and the Basic Research Nanotechnology Award (Province of Styria).
In 2006 he got the offer to found the NanoTecCenter Weiz Forschungsgesellschaft mbH, which he directed as Scientific Managing Director until 2015, in parallel to his appointment at TU Graz.
In 2015 he joined Humboldt-Universität zu Berlin as full professor (W3) at the Departments of Physics and Chemistry as well as a member of the Integrative Research Institute for the Sciences (IRIS Adlershof).
In August 2018 he also accepted the offer of Helmholtz-Zentrum Berlin to found and lead a Joint Laboratory as well as Joint Helmholtz Research Group on “Generative Manufacturing Processes for Hybrid Devices”.
Paulina Plochocka, Directrice de recherché de 2e classe (DR2) in Laboratoire National des Champs Magnétiques Intenses (LNCMI), CNRS in Toulouse.
P. Plochocka obtained her PhD cum-laude in 2004 at the University of Warsaw working on the dynamics of many-body interactions between carriers in doped semi-magnetic quantum wells (QW). During her first post doc at Weizmann Institute of science, she started working on the electronic properties of a high mobility 2D electron gas in the fractional and integer quantum Hall Effect regime. She continued this topic during second post doc in LNCMI Grenoble, where she was holding individual Marie Curie scholarship. At the same time, she enlarged her interest of 2D materials towards graphene and other layered materials as TMDCs or black phosphorus. In 2012 she obtained permanent position in LNCMI Toulouse, where she created the Quantum Electronics group, which investigates the electronic and optical properties of emerging materials under extreme conditions of high magnetic field and low temperatures. Examples include semiconducting layer materials such as transition metal dichalcogenides, GaAs/AlAs core shell nanowires and organic inorganic hybrid perovskites.
Sam Stranks is Professor of Optoelectronocs and Royal Society University Research Fellow in the Department of Chemical Engineering & Biotechnology and the Cavendish Laboratory, University of Cambridge. He obtained his DPhil (PhD) from the University of Oxford in 2012. From 2012-2014, he was a Junior Research Fellow at Worcester College Oxford and from 2014-2016 a Marie Curie Fellow at the Massachusetts Institute of Technology. He established his research group in 2017, with a focus on the optical and electronic properties of emerging semiconductors for low-cost electronics applications.
Sam received the 2016 IUPAP Young Scientist in Semiconductor Physics Prize, the 2017 Early Career Prize from the European Physical Society, the 2018 Henry Moseley Award and Medal from the Institute of Physics, the 2019 Marlow Award from the Royal Society of Chemistry, the 2021 IEEE Stuart Wenham Award and the 2021 Philip Leverhulme Prize in Physics. Sam is also a co-founder of Swift Solar, a startup developing lightweight perovskite PV panels, and an Associate Editor at Science Advances.
Dr. Tze-Chien Sum is an Associate Professor at the Division of Physics and Applied Physics, School of Physical and Mathematical Sciences (SPMS), Nanyang Technological University (NTU) where he leads the Femtosecond Dynamics Laboratory. He is presently the Associate Dean (Research) at the College of Science. Tze-Chien received his Ph.D. in Physics from the National University of Singapore (NUS) in 2005, for the work in proton beam writing and ion-beam spectroscopy. His present research focuses on investigating light matter interactions; energy and charge transfer mechanisms; and probing carrier and quasi-particle dynamics in a broad range of emergent nanoscale and light harvesting systems. Tze-Chien received a total of 11 teaching awards from NUS and NTU, including the coveted Nanyang Award for Excellence in Teaching in 2006 and the 2010 SPMS Teaching Excellence Honour Roll Award. Most recently, he received the 2013 SPMS Young Researcher Award; the Institute of Physics Singapore 2014 World Scientific Medal and Prize for Outstanding Physics Research; the 2014 Nanyang Award for Research Excellence (Team); and the 2015 Chemical Society of Japan Asian International Symposium Distinguished Lectureship Award. More information can be found at http://www.ntu.edu.sg/home/tzechien/spms/index.html
Wolfgang Tress is currently working as a scientist at LPI, EPFL in Switzerland, with general interests in developing and studying novel photovoltaic concepts and technologies. His research focuses on the device physics of perovskite solar cells; most recently, investigating recombination and hysteresis phenomena in this emerging material system. Previously, he was analyzing and modeling performance limiting processes in organic solar cells.
Angus Hin-Lap Yip joined the Department of Materials Science and Engineering (MSE) and the School of Energy and Environment (SEE) at the City University of Hong Kong as Professor in 2021. He has been the associate director of the Hong Kong Institute for Clean Energy (HKICE) since 2022. He was also elected as a member of the Hong Kong Young Academy of Sciences. From 2013-2020, he was a Professor at the State Key Laboratory of Luminescent Materials and Devices (SKLLMD) at the South China University of Technology (SCUT). He got his BSc (2001) and MPhil (2003) degrees in Materials Science from the Chinese University of Hong Kong (CUHK) and completed his PhD degree in MSE in 2008 at the University of Washington (UW), Seattle. His research combines materials, interface, and device engineering to improve polymer and perovskite solar cells and other optoelectronic devices. He has published more than 270 scientific papers with citations over 36000 and an H-index of 99. He was also honoured as ESI“Highly Cited Researcher” in Materials Science 9 times from 2014-2022.
Colloidal semiconductor nanocrystals (NCs), also known as colloidal quantum dots, have become essential building blocks of many different optoelectronic devices, e.g. efficient photodetectors and vivid color screen displays, and are playing a pivotal role for the development of future quantum technologies, e.g. highly bright sources of single and entangled photons. These novel quantum nanomaterials offer a combination of tunable optical properties as well as compatibility to low-cost solution-based processing. Perovskite (APbX3, A=MA,FA,Cs; X=Cl, Br, I) nanocrystals are the latest generations of QDs and despite some similarities with the conventional II-VI and III-V QDs, a rather new mindset is required to address their optical properties and unveil their potential in optoelectronics and quantum technologies.
This symposium aims at bringing together experimentalists and theoreticians who are investigating various fundamental processes in quantum confined perovskite nanomaterials, from the synthesis and optical characterization down to the single particle/photon level, to theoretical modelling and device applications. It provides a forum for discussing the latest scientific discoveries in these exciting new research areas bridging material science with optoelectronics and quantum technologies
- Chemistry: synthesis methods, core-shell structures, surface chemistry, self-assembly, structural characterization, lead-free metal halide nanocrystals
- Optical spectroscopy: carrier dynamics at ensemble and single dot level, stimulated emission, photon statistics
- Theory: exciton-phonon coupling, fine-structure splitting, molecular dynamics of ligands and structure dynamics
- Devices: LEDs, LCD displays, solar cells, lasers, photodetectors, scintillators
Maksym Kovalenko has been a tenure-track Assistant Professor of Inorganic Chemistry at ETH Zurich since July 2011 and Associate professor from January 2017. His group is also partially hosted by EMPA (Swiss Federal Laboratories for Materials Science and Technology) to support his highly interdisciplinary research program. He completed graduate studies at Johannes Kepler University Linz (Austria, 2004-2007, with Prof. Wolfgang Heiss), followed by postdoctoral training at the University of Chicago (USA, 2008-2011, with Prof. Dmitri Talapin). His present scientific focus is on the development of new synthesis methods for inorganic nanomaterials, their surface chemistry engineering, and assembly into macroscopically large solids. His ultimate, practical goal is to provide novel inorganic materials for optoelectronics, rechargeable Li-ion batteries, post-Li-battery materials, and catalysis. He is the recipient of an ERC Consolidator Grant 2018, ERC Starting Grant 2012, Ruzicka Preis 2013 and Werner Prize 2016. He is also a Highly Cited Researcher 2018 (by Clarivate Analytics).
Dr. Francesco Di Stasio obtained a Ph.D. in Physics at University College London (UK) in 2012. He then worked as a research Scientist at Cambridge Display Technology (Sumitomo Chemical group, UK) until he undertook postdoctoral research at the Istituto Italiano di Tecnologia (IIT, Italy). In 2015 he was awarded a Marie Skłodowska-Curie Individual Fellowship at the Institute of Photonic Sciences (ICFO, Spain). Since 2020 he is Principal Investigator of the Photonic Nanomaterials group at IIT after being awarded an ERC Starting grant. Francesco is a materials scientist with more than 10 years of research experience in optoelectronics.
Current research interests and methodology: Nanomaterials for classical and non-classical light-sources: This research activity focuses on the investigation of synthetic routes to obtain highly luminescent semiconductor colloidal nanocrystals and exploit such material in light-emitting diodes (LEDs). Here, we study how chemical treatments of colloidal nanocrystals can promote enhanced performance in devices, and physico-chemical properties of nanocrystals (e.g. self-assembly and surface chemistry) can be exploited to fabricate optoelectronic devices with innovative architectures. Novel methods and materials for light-emitting diodes: The group applies materials science to optoelectronics by determining which fabrication parameter lead to enhanced performance in LEDs. In order to transition from classical to non-classical light-sources based on colloidal nanocrystals, the group is developing novel methods for controlling the deposition and positioning of an individual nanocrystals in the device. Both “top-down” and “bottom-up” approaches are investigated.
Jacky Even was born in Rennes, France, in 1964. He received the Ph.D. degree from the University of Paris VI, Paris, France, in 1992. He was a Research and Teaching Assistant with the University of Rennes I, Rennes, from 1992 to 1999. He has been a Full Professor of optoelectronics with the Institut National des Sciences Appliquées, Rennes,since 1999. He was the head of the Materials and Nanotechnology from 2006 to 2009, and Director of Education of Insa Rennes from 2010 to 2012. He created the FOTON Laboratory Simulation Group in 1999. His main field of activity is the theoretical study of the electronic, optical, and nonlinear properties of semiconductor QW and QD structures, hybrid perovskite materials, and the simulation of optoelectronic and photovoltaic devices. He is a senior member of Institut Universitaire de France (IUF).
Patanjali Kambhampati. BA Carleton College USA (1992), PHD University of Texas (USA) 1998, PDF University of Texas (USA) 1999 - 2001. Professor of Chemistry McGill University (2003 - present). Research focus of semiconductor nanostructures and femtosecond laser spectroscopy.
Brian A. Korgel is the Rashid Engineering Regents Chair Professor of Chemical Engineering at the University of Texas at Austin (USA) and works in the field of nanomaterials chemistry and complex fluids. He is Director of the Energy Institute at UT Austin. He received his PhD from UCLA in 1997 and was a post-doctoral fellow at University College Dublin, Ireland until 1998 before joining the faculty at UT Austin. He has been Visiting Professor at the University of Alicante in Spain as a Senior Fulbright Fellow, Visiting Professor at the Université Josef Fourier in France and Distinguished Visiting Professor at the Chinese Academy of Sciences in Beijing. He directs the Industry/University Cooperative Research Center for a Solar Powered Future, has co-founded two companies, Innovalight and Piñon Technologies, and serves as an Associate Editor for Chemistry of Materials. He has published more than 220 papers and has received various honors including the Professional Progress Award from the American Institute of Chemical Engineers (AIChE) and the ISHA Roy-Somiya Medal, and is a Fellow of the American Association for the Advancement of Science (AAAS).
Alex earned his Ph.D. in physics of semiconductors from Chernivtsi National University, Ukraine for his work on electronic properties of nitride semiconductor alloys.
In 2004 he joined the Quantum Semiconductors and Bionanophotonics lab at University of Sherbrooke as a postdoc, working on theoretical modeling of laser-assisted quantum well intermixing and self-assembly processes of organic monolayers on metal and semiconductor surfaces for applications in bio-sensing.
In 2008 he moved to Quantum Theory Group at National Research Council of Canada in Ottawa, where he worked on many-body problems in epitaxial and colloidal semiconductor and graphene quantum dots; in particular, simulations of multi-exciton generation, Auger processes and optical properties of nanocrystals used in hybrid polymer-semiconductor solar cells.
Alex joined Ted Sargent’s Nanomaterials for Energy Group in 2011 and worked on characterization and modeling of the semiconductor nanocrystal surfaces and developing the synthesis methods for nanomaterials with improved optical and transport properties for photovoltaics.
In 2018, Alex joined the Department of Physical and Environmental Sciences at the University of Toronto, Scarborough as an Assistant Professor in Clean Energy. His topics of interest are materials for energy storage and novel materials discovery using high-throughput experiments and machine learning.
Haizheng Zhong is a professor of photonic materials in the school of materials science and Engineering at Beijing Institute of Technology (BIT). He obtained his B.E. degree in 2003 from Jilin University, and then undertook his Ph.D. studies at the Institute of Chemistry, Chinese Academy of Sciences (ICCAS) from 2003 to 2008. During 2017/04-2017/10, he spent 6 months in UCLA as a visiting student. After that, he worked as postdoc in the University of Toronto during 2008–2010. He joined School of Materials Science & Engineering at Beijing Institute of Technology (BIT) as an associate professor in 2010 and was promoted to full professor in 2013. His current research interests are in the area of colloidal quantum dots for photonics and optoelectronics. His recent awards include Xu-Rong Xu Luminescence Best Paper Award (2013), the National Science Foundation for Excellent Young Scholars (2017), Beijing Science and Technology Award (2018, 2/10), 2019 IDW best paper award. Since 2019, he serves as senior editor for The Journal of Physical Chemistry Letters and moved to executive editor in 2020.
Hybrid perovskites have emerged as promising candidates for highly efficient optoelectronic devices, including solar cells, light-emitting diodes, photodetectors, and lasers. However, the limited stability of hybrid perovskite materials and the corresponding devices remains an ongoing scientific challenge. One of the underlying reasons for this relates to the mixed ionic-electronic conductivity, which leads to the migration of mobile ions under device operation conditions that can be detrimental for the performance. These instabilities have stimulated the development of a number of promising strategies to address them, such as employing passivation agents, as well as using low-dimensional perovskites. While these unique properties of hybrid perovskite materials increase the level of complexity in understanding their optoelectronics, they have also paved the way to innovative applications, such as in resistive switching memory elements and battery materials.
The aim of this symposium is to bring together experts from various disciplines and provide a unique forum for discussion towards deepening the understanding of the relationship between hybrid perovskite dimensionality and mixed ionic-electronic conductivity with relevance for stability and performance of perovskite-based devices.
For your information, extended versions of contributions presented during this symposium can be published in a special collection, featured in Frontiers in Energy Research.
Sponsored by
- Molecular design and structural properties of low-dimensional perovskites
- Mixed ionic-electronic conductivity
- Photophysics of low-dimensional perovskites
- Correlating structural and optoelectronic properties
- Device engineering and theoretical insights
- Emerging properties and applications
Dr. Moritz H. Futscher obtained his PhD in physics from the University of Amsterdam in January 2020 for his work performed at the research institute AMOLF. His PhD thesis focused on degradation channels related to ion migration and performance limitations of metal halide perovskites. After completing his PhD, he joined the Swiss Federal Laboratories for Materials Science and Technology (Empa) as a postdoctoral researcher and Rubicon Fellow working on metal halide perovskites and thin-film solid-state batteries. His main interest lies in understanding and harnessing the mixed ionic-electronic conductivities of different materials for novel applications related to renewable energy conversion and storage.
Dr. Jovana V. Milić obtained her PhD in the Department of Chemistry and Applied Biosciences at ETH Zurich in July 2017. Her research interests encompass (supra)molecular engineering of bioinspired organic materials with the aim of developing functional nanotechnologies. Since October 2017, she has worked as a scientist with Prof. Michael Graetzel in the Laboratory for Photonics and Interfaces at EPFL in Switzerland on the development of novel photovoltaic materials, with the focus on dye-sensitized and hybrid perovskite solar cells. In September 2020, she has taken on a position of a Group Leader in the Soft Matter Physics Group of the Adolphe Merkle Institute at the University of Fribourg in Switzerland. For more information, refer to her LinkedIn profile (linkedin.com/in/jovanavmilic), ORCID 0000-0002-9965-3460, and Twitter (@jovana_v_milic).
We are a multidisciplinary and collaborative research team with the overarching goal to establish structure-function relationships by understanding and advancing the fundamental knowledge rooted in the physics, chemistry and engineering of next generation materials for optoelectronics, sustainable, energy conversion, quantum computing, sensing and environmental preservation. Our philosophy is to develop creative and out-of-the-box approaches to solve fundamental scientific problems and apply this knowledge to demonstrate technologically relevant performance in devices.
Jacky Even was born in Rennes, France, in 1964. He received the Ph.D. degree from the University of Paris VI, Paris, France, in 1992. He was a Research and Teaching Assistant with the University of Rennes I, Rennes, from 1992 to 1999. He has been a Full Professor of optoelectronics with the Institut National des Sciences Appliquées, Rennes,since 1999. He was the head of the Materials and Nanotechnology from 2006 to 2009, and Director of Education of Insa Rennes from 2010 to 2012. He created the FOTON Laboratory Simulation Group in 1999. His main field of activity is the theoretical study of the electronic, optical, and nonlinear properties of semiconductor QW and QD structures, hybrid perovskite materials, and the simulation of optoelectronic and photovoltaic devices. He is a senior member of Institut Universitaire de France (IUF).
Annamaria Petrozza received her PhD in Physics from the University of Cambridge (UK) in 2008 with a thesis on the study of optoelectronic processes at organic and hybrid semiconductors interfaces under the supervision of Dr. J.S. Kim and Prof Sir R.H. Friend. From July 2008 to December 2009 she worked as research scientist at the Sharp Laboratories of Europe, Ltd on the development of new market competitive solar cell technologies (Dye Sensitized Solar cells/Colloidal Quantum Dots Sensitized Solar cells). Since January 2010 she has a Team Leader position at the Center for Nano Science and Technology -IIT@POLIMI. She is in charge of the development of photovoltaic devices and their characterization by time-resolved and cw Photoinduced Absorption Spectroscopy, Time-resolved Photoluminescence and electrical measurements. Her research work mainly aims to shed light on interfacial optoelectronic mechanisms, which are fundamental for the optimization of operational processes, with the goal of improving device efficiency and stability.
Sam Stranks is Professor of Optoelectronocs and Royal Society University Research Fellow in the Department of Chemical Engineering & Biotechnology and the Cavendish Laboratory, University of Cambridge. He obtained his DPhil (PhD) from the University of Oxford in 2012. From 2012-2014, he was a Junior Research Fellow at Worcester College Oxford and from 2014-2016 a Marie Curie Fellow at the Massachusetts Institute of Technology. He established his research group in 2017, with a focus on the optical and electronic properties of emerging semiconductors for low-cost electronics applications.
Sam received the 2016 IUPAP Young Scientist in Semiconductor Physics Prize, the 2017 Early Career Prize from the European Physical Society, the 2018 Henry Moseley Award and Medal from the Institute of Physics, the 2019 Marlow Award from the Royal Society of Chemistry, the 2021 IEEE Stuart Wenham Award and the 2021 Philip Leverhulme Prize in Physics. Sam is also a co-founder of Swift Solar, a startup developing lightweight perovskite PV panels, and an Associate Editor at Science Advances.
Since 2019, Yana Vaynzof holds the Chair for Emerging Electronic Technologies at the Technical University of Dresden. Prior to that (2014-2019), she was a juniorprofessor in the Department of Physics and Astronomy, Heidelberg University (Germany). She received a B.Sc degree (summa cum laude) in electrical engineering from the Technion - Israel Institute of Technology (Israel) in 2006, and a M.Sc. degree in electrical engineering from Princeton University, (USA) in 2008. She pursued a Ph.D. degree in physics under the supervision of Prof. Sir. Richard Friend at the Optoelectronics Group, Cavendish Laboratory, University of Cambridge (UK), and investigated the development of hybrid polymer solar cells and the improvement of their efficiency and stability. Upon completing her PhD in 2011, she joined the Microelectronics group at the University of Cambridge as a Postdoctoral Research Associate focusing on the research of surfaces and interfaces in organic and hybrid optoelectronics. Yana Vaynzof was the recipient of a number of fellowships and awards, including the ERC Starting Grant, Gordon Y. Wu Fellowship, Henry Kressel Fellowship, Fulbright-Cottrell Award and the Walter Kalkhof-Rose Memorial Prize.
X-ray detection for medical imaging relies upon high sensitivity materials as a primary concern. Enhancing the sensitivity of X-ray detectors minimizes the X-ray dose during routine medical examinations. Despite tremendous investment in inorganic detectors, technical requirements limit their applicability. Therefore, there is need for reconfigurable soft materials compatible with facile integration. Sensitive and low-cost X-ray detectors have been actively sought. Recently, it’s been shown that the lowest detectable X-ray dose rate using single crystals of CH3NH3PbBr3 perovskite is 0.5 μGyair s–1 which is much lower than that required for regular medical diagnostics (5.5 μGyair s–1) and with a sensitivity 80 μC G cm–2 higher that current state of the art Se X-ray detectors. Perovskite materials combine unique features that might empower breakthrough detector technology for broad applications in the fields of security, defense, medical imaging, diagnostics, astrophysics, industrial material inspection, nuclear power stations and scientific research. In this symposium, we aim to bring key elements required to pave the way to cheaper and low does high-energy radiation detectors and scintillators.
- Organometallic halide perovskite for high radiation energy detectors
- Organic single crystals, polycrystals and plastic materials for direct and indirect ionizing detectors
- Theoretical prediction of new materials for high energy radiation detectors with high performance, low cost and low radiation dose on human body
Dr. Mahshid Ahmadi received her Ph.D. from Nanyang Technological University, Singapore in 2013. She then worked as a research technology consultant in a start-up solar cell company (HEE) in Dallas, Texas, USA. She is currently working as an assistant professor at Joint Institute for Advanced Materials (JIAM), Department of Materials Science, University of Tennessee, Knoxville. Her research interest includes materials development and electronic device fabrication. Specially, her current research focuses on organic-inorganic halide perovskite photovoltaics and
high energy radiation detectors.
Perovskite solar cells and sensors. Defects in semiconduciors and charge recombiantion.
Dr. Yadong XU received his PhD in School of Materials Science & Engineering, Northwestern Polytechnical University in 2010 and is currently a Professor in State Key Laboratory of Solidification Processing and Key Laboratory of Radiation Detection Materials and Devices, Northwestern Polytechnical University, China. Dr. XU has received many prestigious awards including “Second-class of National Technological Invention”, P.R. China, 2013, “First- class of Scientific and Technical Awards”, Shaanxi Province,2012, “Youth outstanding talent support program" in Shaanxi, China, (2017), Excellent Talents project in Shaanxi Province, China, 2016. His research interests cover development of new semiconductor materials for X/γ-ray detectors, growth of electro-optical crystals for THz application, optical and electrical properties of the semiconductor materials and defect engineering. Dr XU has published more than 70 SCI papers and documented 16 patents.
Dr. Ge Yang is an Associate Professor at the Department of Nuclear Engineering of North Carolina State University (NCSU). His research interests have revolved around the opportunities at the intersection of nuclear engineering, materials science and engineering and electrical engineering. Special emphasis is placed on developing new materials and devices for improving radiation detection and imaging technologies, which are widely needed in medical imaging, nonproliferation, nuclear security, industrial process monitoring, environmental safety survey and remediation, astronomical observation instrumentation and high energy physics R&D. Dr. Yang’s research has yielded 7 patent disclosures, 151 publications in top-ranked scientific journals and conference proceedings, and numerous invited presentations at various professional conferences. He is a two-time recipient of the prestigious R&D 100 Award together with his collaborators for developing various compact sensors to detect and image radiation. Dr. Ge Yang is also the inaugural recipient of Goodnight Early Career Innovators Award.
Photo-driven or dark electrochemistry provides an interesting route to store renewable resources, generate fuels, and process energy-intense chemical commodities. This symposium invites contributions on the state of the field in electrochemical reduction of water, CO2, nitrogen and beyond, from the atomistic to the device and industrial scale.
Symposium topics span fundamental mechanistic studies, catalyst design, operando studies, membranes and ionomers, gas diffusion electrodes, membrane electrode assemblies, flow reactors, device engineering, modelling spanning all relevant length scales, relevant experimental and theoretical methods development, and technoeconomic analysis.
- Fundamental mechanistic kinetic and operando studies
- Design of new electrocatalysts
- New developments in modelling the electrochemical interface
- Mass transfer modelling of GDEs and MEAs
- Flow reactors for high-throughput electrocatalytic synthesis
- Industrial and commercial implementations
- Technoeconomic analysis
Sophia Haussener is a Professor heading the Laboratory of Renewable Energy Science and Engineering at the Ecole Polytechnique Federale de Lausanne (EPFL). Her current research is focused on providing design guidelines for thermal, thermochemical, and photoelectrochemical energy conversion reactors through multi-physics modelling and experimentation. Her research interests include: thermal sciences, fluid dynamics, charge transfer, electro-magnetism, and thermo/electro/photochemistry in complex multi-phase media on multiple scales. She received her MSc (2007) and PhD (2010) in Mechanical Engineering from ETH Zurich. She was a postdoctoral researcher at the Joint Center of Artificial Photosynthesis (JCAP) and the Lawrence Berkeley National Laboratory (LBNL) between 2011 and 2012. She has published over 70 articles in peer-reviewed journals and conference proceedings, and 2 books. She has been awarded the ETH medal (2011), the Dimitris N. Chorafas Foundation award (2011), the ABB Forschungspreis (2012), the Prix Zonta (2015), the Global Change Award (2017), and the Raymond Viskanta Award (2019), and is a recipient of a Starting Grant of the Swiss National Science Foundation (2014).
Prof. Aimy Bazylak is the Canada Research Chair in Thermofluids for Clean Energy and Professor in the Department of Mechanical and Industrial Engineering at the U of T. In 2011, she was awarded the I.W. Smith Award from the Canadian Society for Mechanical Engineering, and she received the Ontario Early Researcher Award in 2012. From 2015-2018, she served as the Director of the U of T Institute for Sustainable Energy. In 2015 she was named an Alexander Von Humboldt Fellow (Germany), and in 2019 she was named a Fellow of the American Society of Mechanical Engineers. In 2020, she was named a Helmholtz International Fellow (Germany), was awarded the U of T McLean Award, and was elected to the Royal Society of Canada College of New Scholars, Artists and Scientists.
Raffaella Buonsanti obtained her PhD in Nanochemistry in 2010 at the National Nanotechnology Laboratory, University of Salento. Then, she moved to the US where she spent over five years at the Lawrence Berkeley National Laboratory, first as a postdoc and project scientist at the Molecular Foundry and after as a tenure-track staff scientist in the Joint Center for Artificial Photosynthesis. In October 2015 she started as a tenure-track Assistant Professor in the Institute of Chemical Sciences and Engineering at EPFL. She is passionate about materials chemistry, nanocrystals, understanding nucleation and growth mechanisms, energy, chemical transformations.
Marc T.M. Koper is Professor of Surface Chemistry and Catalysis at Leiden University, The Netherlands. He received his PhD degree (1994) from Utrecht University (The Netherlands) in the field of electrochemistry. He was an EU Marie Curie postdoctoral fellow at the University of Ulm (Germany) and a Fellow of Royal Netherlands Academy of Arts and Sciences (KNAW) at Eindhoven University of Technology, before moving to Leiden University in 2005. His main research interests are in fundamental aspects of electrocatalysis, proton-coupled electron transfer, theoretical electrochemistry, and electrochemical surface science.
The conversion of solar energy into fuels and chemicals has gained scientific and industrial interest. Cheap, highly efficient and stable materials for long periods of operation must be designed. To provide guidelines for materials and process design understanding of electrified solid/electrolyte interfaces at the micro- and nanoscale must be obtained.
This symposium will bring together materials scientists, physicists and chemists whose common goal is to unlock the secrets of electrified interfaces. Applications of interest include but are not limited to photoelectrochemical, photocatalytic, and electrocatalytic approaches for water splitting,CO reduction, and high-value chemicals.
- Operando characterization of interfaces
- Reaction mechanism
- Active sites
- Heterogeneous interfaces
- Materials and interface design
Boettcher is a Professor in the Department of Chemistry and Biochemistry at the University of Oregon. His research is at the intersection of materials science and electrochemistry, with a focus on fundamental aspects of energy conversion and storage. He has been named a DuPont Young Professor, a Cottrell Scholar, a Sloan Fellow, and a Camille-Dreyfus Teacher-Scholar. He was included as an ISI highly cited researcher (top 0.1% over past decade) over the past two years. In 2019, he founded the Oregon Center for Electrochemistry and in 2020 launched the nation’s first targeted graduate program in electrochemical technology.
Associate Professor, Chemistry Department, University of Colorado, Boulder
Adjunct Professor, National Renewable Energy Laboratory
James Durrant is Professor of Photochemistry in the Department of Chemistry, Imperial College London and Ser Cymru Solar Professor, University of Swansea. His research addresses the photochemistry of new materials for solar energy conversion targeting both solar cells (photovoltaics) and solar to fuel (i.e.: artificial photosynthesis. It is based around employing transient optical and optoelectronic techniques to address materials function, and thereby elucidate design principles which enable technological development. His group is currently addressing the development and functional characterisation of organic and perovskite solar cells and photoelectrodes for solar fuel generation. More widely, he leads Imperial's Centre for Processable Electronics, founded the UK�s Solar Fuels Network and led the Welsh government funded S�r Cymru Solar initiative. He has published over 500 research papers and 5 patents, and was recently elected a Fellow of the Royal Society
Prof. Beatriz Roldán Cuenya is currently Director of the Interface Science Department at the Fritz Haber Institute of the Max Planck Society in Berlin (Germany). She is an Honorary Professor at the Technische Universität Berlin, at the Freie Universität Berlin, and at the Ruhr-University Bochum, all in Germany. Also, she serves as a Distinguished Research Professor at the University of Central Florida (USA).
Prof. Roldán Cuenya began her academic career by completing her M.S./B.S. in Physics with a minor in Materials Science at the University of Oviedo, Spain in 1998. Afterwards she moved to Germany and obtained her Ph.D. from the Department of Physics of the University of Duisburg-Essen with summa cum laude in 2001. Subsequently, she carried out her postdoctoral research in the Department of Chemical Engineering at the University of California Santa Barbara (USA) until 2003.
In 2004, she joined the Department of Physics at the University of Central Florida (UCF) as Assistant Professor where she moved through the ranks to become a full professor in 2012. In 2013 Prof. Roldan Cuenya, moved to Germany to become Chair Professor of Solid State Physics in the Department of Physics at Ruhr-University Bochum until 2017.
During her academic career, Prof. Roldan Cuenya received an Early CAREER Award from the US National Science Foundation (2005) and the international Peter Mark Memorial award from the American Vacuum Society (2009). In 2016 she became Fellow of the Max Planck Society in Germany and also received the prestigious Consolidator Award from the European Research Council. In 2020, she became a member of the Academia Europaea (Academy of Europe). She received the AVS Fellow Award (2021), the International Society of Electrochemistry-Elsevier Prize for Experimental Electrochemistry (2021), the 2022 Paul H. Emmet Award of the North American Catalysis Society, and the Röntgen Medal of the City of Remscheid (2022).
Prof. Roldan Cuenya is the author of more than 200 peer-reviewed publications, 6 book chapters, and 6 patents. She has given 245 invited talks, with 13 plenary talks and 33 keynote lectures since 2017. Her H-factor is 74 (Google Scholar) and her work has received over 21,500 citations.
She presently serves on the editorial advisory boards of the Journal of Catalysis and Chemical Reviews. In addition, she also contributes to a number of advisory committees, including the Liquid Sunlight Alliance (USA), the Advanced Research Center Chemical Building Blocks Consortium (Utrecht, the Netherlands), the Spanish Synchrotron Facility ALBA (Barcelona, Spain), the German Synchrotron DESY (Hamburg, Germany), the Helmholtz-Zentrum Berlin for the strategic development of BESSY II (Berlin, Germany), the Institute of Chemical Research of Catalonia (ICIQ in Tarragona, Spain), the UK Catalysis Hub and the Ertl Center for Electrochemistry & Catalysis (South Korea).
Prof. Roldan Cuenya’s research program explores physical and chemical properties of nanostructures, with emphasis on advancements in nanocatalysis based on operando microscopic and spectroscopic characterization.
Dr. Kelsey A. Stoerzinger joined Oregon State University as an Assistant Professor and Callahan Faculty Scholar in the School of Chemical, Biological and Environmental Engineering in the Fall of 2018. She holds a joint appointment at Pacific Northwest National Laboratory, where she was a Linus Pauling Distinguished Postdoctoral Fellow. Kelsey completed her doctoral studies in Materials Science and Engineering in 2016 from the Massachusetts Institute of Technology, supported by a National Science Foundation Graduate Research Fellowship. She received an M.Phil. in Physics from the University of Cambridge as a Churchill Scholar and a B.S. from Northwestern University. Prof. Stoerzinger is the recipient of the NSF CAREER Award (2020) and the Doctoral New Investigator Award of the ACS-PRF (2019), in addition to recognition for her contributions as a teacher and advisor.
By virtue of their emergent size, morphology, and surface effects, nanoscale crystals offer new dimensions of control over material properties. The synthesis, investigation, and utilization of nanoscale crystals lie at the interface between chemistry, physics, materials science, and engineering. Learning to control the electronic and reactivity properties of nanoscale crystals involves novel synthesis of structures, heterostructures, shapes, and aggolmerates, and/or assemblies. Additionally, deliberate control of nanomaterial surface chemistry offers additional pathways to improved functionality.
The NGFM21 symposium will bring together leading scientists in the field to discuss their latest discoveries in the form, function, and application of nanoscale mateirals.
- Nanocrystal synthesis: Composition, morphology, heterostructues, assembly, dispersion control, and mechanism
- Nanocrystal surface chemistry: Fundamental properties and targeted function
- Nanocrystal properties: New insights from spectroscopy, theory, and simulation
- Nanocrystal applications: From light emission to catalysis
ICREA Prof. Jordi Arbiol was born in Molins de Rei (Catalonia) in 1975. Having graduated in physics from the Universitat de Barcelona (UB) in 1997, he went on to obtain his PhD in transmission electron microscopy as applied to nanostructured materials from this same university in 2001, earning the “European Doctorate” label in recognition of the project’s European dimension, as well as the university’s extraordinary doctorate award. He then held the position of assistant professor at the UB, before becoming a group leader at the Institut de Ciència de Materials de Barcelona in 2009, as well as the scientific supervisor of this institute’s electron microscopy facility. It was here that he began his personal and professional mission to improve Barcelona’s baseline electron microscopy infrastructure, an endeavour he has continued to pursue at the ICN2, which he joined in 2015 as the leader of the Advanced Electron Nanoscopy Group.
He was President of the Spanish Microscopy Society (SME) (2017-2021), Vice-president (2013-2017) and member of its Executive Board (2009-2021). In 2019 he became a Member of the Executive Board of the International Federation of Societies for Microscopy (IFSM) (2019-2027). He is member of the Research Committee at the Barcelona Institute of Science and Technology (BIST) and scientific supervisor of Electron Microscopy at ICN2 and the ALBA Synchrotron EM Center.
Other recognitions include the FWO Commemorative Medal in 2021, the BIST Ignite Award in 2018, the 2014 EU40 Materials Prize (E-MRS), the 2014 EMS Outstanding Paper Award and being listed in the Top 40 under 40 Power List (2014) by The Analytical Scientist. He currently has more than 410 peer-reviewed publications, h-index 87 GoS (76 WoS), with more than 24,400 GoS (19,000 WoS) citations.
Taeghwan Hyeon received his B. S. (1987) and M. S. (1989) in Chemistry from Seoul National University (SNU), Korea. He obtained his Ph.D. in Chemistry from U. Illinois at Urbana-Champaign (1996), and conducted one-year postdoctoral research at the Catalysis Center of Northwestern University. Since he joined the faculty of the School of Chemical and Biological Engineering of Seoul National University in 1997, he has focused on the synthesis and applications of uniform-sized nanoparticles and related nanostructured materials, and published > 400 papers in prominent international journals (> 61,000 citations and h-index of > 125). He is a SNU Distinguished Professor. In September 2020, he was selected as 2020 Citation Laureate (known as Nobel Prize watch list) in Chemistry by Clarivate Analytics/Web of Science. In 2011, he was selected as “Top 100 Chemists” of the decade by UNESCO&IUPAC. Since 2014, he has been chosen as “Highly Cited Researcher” in Chemistry and Materials Science areas by Clarivate Analytics. Since 2012, he has been serving as a Director of Center for Nanoparticle Research of Institute for Basic Science (IBS). He is Fellow of Royal Society of Chemistry (RSC) and Materials Research Society (MRS). He received many awards including the Korea S&T Award from the Korean President (2016), Hoam Prize (2012, Samsung Hoam Foundation), POSCO-T. J. Park Award (2008), and the IUVSTA Prize for Technology (International Union for Vacuum Science, Technique and Applications, 2016). From 2010 to 2020, he served as an Associate Editor of Journal of the American Chemical Society. He has been serving as editorial (advisory) board members of ACS Central Science, Advanced Materials, Nano Today, and Small.
Maria Ibáñez was born in La Sénia (Spain). She graduated in physics at the University of Barcelona, where she also obtained her PhD in 2013, under the supervision of Prof. Dr. Cabot and Prof. Dr. Morante. Her PhD thesis was qualified Excellent Cum Laude and awarded with the Honors Doctorate by the University of Barcelona. Her PhD research was funded by a Spanish competitive grant (FPU) which supported her to conduct short-term research stays in cutting-edge laboratories. In particular she worked at CEA Grenoble (2009), the University of Chicago (2010), the California Institute of Technology (2011), the Cornell University (2012) and the Northwestern University (2013). In 2014, she joined the group of Prof. Dr. Kovalenko at ETH Zürich and EMPA as a research fellow where in 2017 she received the Ružička Prize. In September 2018 she became an Assistant Professor (tenure-track) at IST Austria and started the Functional Nanomaterials group.
The Kraus groups studies the basic mechanisms of the formation and the properties of colloidal particles and their interfaces. At INM - Leibniz Institute for New Materials, it uses such mechanisms to join molecules, polymers, and colloidal particles in order to form materials. (Link)
We study how the properties of composite and hybrid materials depend on their microstructures and how to change them. To this end, we systematically vary size, geometry, chemical composition, and arrangement of the materials’ constituents. We observe how microstructure and interfaces form and affect material properties to create transparent conductive layers of metal nanoparticles for electronics, composites of conductive polymers with optically active particles for sensors and supraparticles that contain optically active nanoparticles, for example. We see particles as the basis of future “active nanocomposites” that can interface with electronics and change their properties whenever required.
Dr. Pramod Pillai is an Associate Professor and a Physical Chemist in the Department of Chemistry at Indian Institute of Science Education and Research (IISER) Pune, India. Dr. Pillai obtained his Ph.D. in Chemistry in 2008 under the supervision of Prof. K. George Thomas at National Institute for Interdisciplinary Science and Technology (NIIST) Trivandrum, India. Prior to joining IISER Pune in June 2014, Dr. Pillai was a postdoctoral fellow in the group of Prof. Bartosz A. Grzybowski at Northwestern University, Evanston, USA (2011-2014), and an Alexander von Humboldt postdoctoral Fellow at Technische Universität in Dortmund, Germany with Prof. Christof M. Niemeyer (2008-2010). Currently Dr. Pillai’s research at IISER Pune is focused on controlling the interplay of forces to improve and impart newer properties at the nanoscale. Some of the properties of interest includes light harvesting, catalysis and self-assembly in hybrid nanomaterials.
2D materials are already recognized as co-catalysts and electro-catalysts for the hydrogen evolution reaction. It was recently found that these robust and affordable materials can be used for other important catalytic reactions, such as the Oxygen Reduction Reaction (ORR) or the Nitrogen Reduction Reaction (N2RR). Understanding the synthesis-structure-activity relationship in these materials is therefore a topic of interest for the community.
This symposium invites contributes regarding the synthesis control, the optimization of catalytic sites and the application of these materials for a variety of reactions.
- Synthetic control over morphology, atomic structure and composition
- Catalytic activity – electro-catalysis and photocatalysis
- Structure-Function relationship in 2D materials
Prof. Zdenek Sofer is tenured professor at the University of Chemistry and Technology Prague since 2019. He received his PhD also at University of Chemistry and Technology Prague, Czech Republic, in 2008. During his PhD he spent one year in Forschungszentrum Julich (Peter Grünberg Institute, Germany) and also one postdoctoral stay at University Duisburg-Essen, Germany. Research interests of prof. Sofer concerning on 2D materials, its crystal growth, chemical modifications and derivatisation. His research covers various applications of 2D materials including energy storage and conversion, electronic, catalysis and sensing devices. He is an associated editor of FlatChem journal. He has published over 460 articles, which received over 15000 citations (h-index of 61).
Prof. Michal Otyepka, Ph.D. (*1975) is professor of physical chemistry and Head of CATRIN-RCPTM research division under roof of Palacký UniversityOlomouc and Head of Nanolab at IT4I Supercomputer center at Ostrava. His research interests cover physical-chemical properties and reactivity of graphene derivatives and 2D materials, non-covalent interactions to 2D materials. He has been developing chemistry of fluorographene (2D chemistry, 2Dchem.org) toward graphene derivatives, which can be applied in (bio)sensing, catalysis and energy storage. He specializes also in molecular dynamics of biomolecules, nanomaterials, and complex molecular systems, force field development and multiscale methods and their applications. He is principal investigator of ERC – Consolidator and Proof of Concept projects. He is the author or co-author of more than 300 papers in international journals, three book chapters and one book.
Dr. Minghao Yu, PI, holds an independent research group (Electrochemistry for Sustainable Energy Storage) at Technische Universität Dresden. His research interest includes 1) the development of novel organic and inorganic 2D layered materials, 2) the investigation of advanced artificial interphases and electrolytes for next-generation batteries, 3) fundamental charge and ion dynamics during electrochemical energy storage processes, and 4) sustainable energy storage device fabrication, including supercapacitors, hybrid-ion capacitors, aqueous batteries, dual-ion batteries, and multivalent metal (Zn, Mg, Al) batteries. He has published more than 120 scientific articles which have attracted more than 20,000 citations with an H-index of 69 (Web of Science). Besides, he is also an associated member of the Center for Advancing Electronics Dresden (cfaed), an associated group leader at Max-Planck-Institut für Mikrostrukturphysik, a highly cited researcher (Clarivate Analytics, 2018-now), 2023 ERC Starting Grant winner, and a Fellow of the Young Academy of Europe.
Efficient, sensitive and wavelength-selective light detection has become central to modern consumer electronics, and also in science and technology. Photodetectors based on crystalline inorganic elemental materials such as silicon and compound semiconductors are the core of today’s photodetectors. However, a new trend has begun: next generation semiconductors such as organics, perovskites, and nanocrystals are now becoming increasingly interesting candidates for low noise, color-selective, efficient photodetection.
This symposium will focus on next-generation photodetectors. New materials, device architectures and characterisation protocols for photodetectors will be foci.
Sponsored by
- Perovskite and organic photodetectors
- Nanocrystals and low dimensional systems for photodetection
- Color-selective and infrared photodetection
- Image sensors with new generation semiconductors
- Thermodynamic limit of the sensitivity of next generation photodetectors
- Photodetector characterisation methods
- Noise, from theory to experiment
- Photomultiplication and amplification
- New compound semiconductors for photodetection
- LiFi and optical wireless communication
- Special applications: X-ray detection, biological applications and wearable sensors
Ted Sargent received the B.Sc.Eng. (Engineering Physics) from Queen's University in 1995 and the Ph.D. in Electrical and Computer Engineering (Photonics) from the University of Toronto in 1998. He holds the rank of Professor in the Edward S. Rogers Sr. Department of Electrical and Computer Engineering at the University of Toronto, where he holds the Canada Research Chair in Nanotechnology and serves as a KAUST Investigator. His book The Dance of Molecules: How Nanotechnology is Changing Our Lives (Penguin) was published in Canada and the United States in 2005 and has been translated into French, Spanish, Italian, Korean, and Arabic. He is founder and CTO of InVisage Technologies, Inc. He is a Fellow of the AAAS “...for distinguished contributions to the development of solar cells and light sensors based on solution-processed semiconductors.” He is a Fellow of the IEEE “... for contributions to colloidal quantum dot optoelectronic devices.”
Professor Uri Banin is the incumbent of the Larisch Memorial Chair at the Institute of Chemistry and the Center for Nanoscience and Nanotechnology at the Hebrew University of Jerusalem (HU). Dr. Banin was the founding director of the Harvey M. Kreuger Family Center for Nanoscience and Nanotechnology (2001-2010) and led the program of the Israel National Nanotechnology Initiative at HU (2007-2010). He served on the University’s Executive Committee and on its board of managers and was a member of the board of Yissum. He served on the scientific advisory board of Nanosys. In 2009 Banin was the scientific founder of Qlight Nanotech, a start-up company based on his inventions, developing the use of nanocrystals in display and lighting applications. Since 2013, Banin is an Associate Editor of the journal Nano Letters. His distinctions include the Rothschild and Fulbright postdoctoral fellowships (1994-1995), the Alon fellowship for young faculty (1997-2000), the Yoram Ben-Porat prize (2000), the Israel Chemical Society young scientist award (2001), the Michael Bruno Memorial Award (2007-2010), and the Tenne Family prize for nanoscale science (2012). He received two European Research Council (ERC) advanced investigator grant, project DCENSY (2010-2015), and project CoupledNC (2017-2022). Banin’s research focuses on nanoscience and nanotechnology of nanocrystals and he authored over 180 scientific publications in this field that have been extensively cited.
Christoph J. Brabec is holding the chair “materials for electronics and energy technology (i-MEET)” at the materials science of the Friedrich Alexander University Erlangen-Nürnberg. Further, he is the scientific director of the Erlangen division of the Bavarian research institute for renewable energy (ZAE Bayern, Erlangen).
He received his PhD (1995) in physical chemistry from Linz university, joined the group of Prof Alan Heeger at UCSB for a sabbatical, and continued to work on all aspects of organic semiconductor spectroscopy as assistant professor at Linz university with Prof. Serdar Sariciftci. He joined the SIEMENS research labs as project leader for organic semiconductor devices in 2001 and joined Konarka in 2004, where he was holding the position of the CTO before joining university.
He is author and co-author of more than 150 papers and 200 patents and patent applications, and finished his habilitation in physical chemistry in 2003.
Philippe Guyot-Sionnest is a professor of Physics and Chemistry at the University of Chicago since 1991. His group developed original aspects of colloidal quantum dots and nanoparticles, including single dot PL microscopy, the luminescent core/shell CdSe/Zns, intraband spectroscopy, charge transfer doping, electrochemical and conductivity studies, the "solid state ligand exchange", and mid-infrared quantum dots. Prior work includes the development of surface infrared-visible sum-frequency generation and the early applications to interfacial and time resolved vibrational spectroscopy of adsorbates.
René Janssen is university professor at the Eindhoven University of Technology (TU/e). He received his Ph.D. in 1987 from the TU/e for a thesis on electron spin resonance and quantum chemical calculations of organic radicals in single crystals. He was lecturer at the TU/e since 1984, and a senior lecturer in physical organic chemistry since 1991. In 1993 and 1994 he joined the group of Professor Alan J. Heeger (Nobel laureate in 2000) at the University of California Santa Barbara as associate researcher to work on the photophysical properties of conjugated polymers. Presently the research of his group focuses on functional conjugated molecules and macromolecules as well as hybrid semiconductor materials that may find application in advanced technological applications. The synthesis of new materials is combined with time-resolved optical spectroscopy, electrochemistry, morphological characterization and the preparation of prototype devices to accomplish these goals. René Janssen has co-authored more than 600 scientific papers. He is co-recipient of the René Descartes Prize from the European Commission for outstanding collaborative research, and received the Research Prize of The Royal Institute of Engineers and in The Netherlands for his work. In 2015 René Janssen was awarded with the Spinoza Prize of The Dutch Research Council.
Organic Photovoltaics (OPV) is a promising emerging technology in photovoltaics, which requires only very little energy and thus CO2 emission for their fabrication, resulting in an extremely short energy payback time. Further, it does not contain any heavy metal elements and can be processed from green solvents. Additionally, thanks to the appearance of the so-called non-fullerene acceptors ( NFA) power conversion efficiencies in OPV have been raised to over 18% under simulated sun light and to over 26% under indoor lighting making OPV very most promising in the field of indoor applications.
This symposium will focus on characterization and modeling of state of the art devices to address the exciting questions about the working principles of organic solar cells and also to identify further optimization potentials. Rational material design for the photoactive layer as well as for interfacial layers will be discussed. Furthermore one focus will be on large scale processing based on new or improved printing techniques. Regarding the objective to integrate OPV into scalable commercial applications another focus will be on the long term stability. A special focus on new materials, device optimization and new industrial application in the field of indoor PV will be set.
- Working principles of organic solar cells accessed through advanced characterization and modeling
- New materials for high efficiency OPV
- Advances in experimental techniques to study organic semiconductors and polymer blends at the nanoscale
- Required material and device properties for sufficient long term stability under different stress conditions
- Material strategies and printing concepts for eco-friendly organic solar cells
- Indoor applications of OPV
Thomas D. Anthopoulos is a Professor of Emerging Electronics at the University of Manchester in the UK. Following the award of his BEng and PhD degrees, he spent two years at the University of St. Andrews (UK), where he worked on organic semiconductors for application in light-emitting diodes before joining Philips Research Laboratories in The Netherlands to focus on printable microelectronics. From 2006 to 2017, he held faculty positions at Imperial College London (UK), first as an EPSRC Advanced Fellow and later as a Reader and full Professor of Experimental Physics. From 2017 to 2023, he was a Professor of Material Science at King Abdullah University of Science and Technology (KAUST) in Saudi Arabia.
Christoph J. Brabec is holding the chair “materials for electronics and energy technology (i-MEET)” at the materials science of the Friedrich Alexander University Erlangen-Nürnberg. Further, he is the scientific director of the Erlangen division of the Bavarian research institute for renewable energy (ZAE Bayern, Erlangen).
He received his PhD (1995) in physical chemistry from Linz university, joined the group of Prof Alan Heeger at UCSB for a sabbatical, and continued to work on all aspects of organic semiconductor spectroscopy as assistant professor at Linz university with Prof. Serdar Sariciftci. He joined the SIEMENS research labs as project leader for organic semiconductor devices in 2001 and joined Konarka in 2004, where he was holding the position of the CTO before joining university.
He is author and co-author of more than 150 papers and 200 patents and patent applications, and finished his habilitation in physical chemistry in 2003.
Mariano Campoy Quiles´s research is devoted to the understanding and development of solution processed semiconductors for energy and optoelectronic applications. He and his team have built substantial research efforts in two application areas, solar photovoltaic (light to electric) and thermoelectric (heat to electric) energy conversion based on organic and hybrid materials. He studied physics at the Univesity of Santiago de Compostela, obtained his PhD in experimental physics from Imperial College London, and since 2008 he leads his team at the Institute of Materials Science of Barcelona.
Dr. Qun LUO received her Bachelor degree in Material Science and Engineering in 2006 from Zhengzhou University, and Ph. D degree in Materials Physics and Chemistry in 2011 from Zhejiang University in China. She had a research experience in the field of photoluminescence properties of rare earth materials. During Jan, 2011 to July, 2011, she did research work in Rennes-1 University of France as a joint Ph.D student in the field of photoelectrochemical properties of sulfide. From Nov. 2011, she started research work of printable electronic inks and printing organic and perovskite solar cells as a post-doctor in Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences. From May, 2015, she jointed Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences as an associate professor. Now, her research interests are printable metal oxides semiconductor inks & printing thin films photovoltaics. She has published more than 60 papers on organic/perovskite photovoltaics and photovoltaic interface engineering.
Morten Madsen, Professor wsr at the University of Southern Denmark, SDU NanoSYD.
My field of expertise is thin-film growth, integration and devices for energy conversion and storage applications. In 2010-2011, I worked with high performance transistors from III-V nanoscale membranes at the Javey research lab, UC Berkeley, California. In 2011, I established the OPV group at SDU NanoSYD, where we work on improving the performance and stability of organic and hybrid solar cells, including thin film synthesis, metal oxide interlayers and interfaces, organic and hybrid active layers as well as film and device degradation. Since 2016, we also have a focus on device up-scaling through Roll-to-Roll (R2R) printing technology at the SDU R2R facility. Vist out site for more details:
https://www.sdu.dk/en/om_sdu/institutter_centre/c_nanosyd/forskningsomrader/organic+solar+cells
Alessandro Mattoni, received a master degree in physics at the University of Perugia and a PhD in solid state physics at the University of Padova. He is staff researcher of the Italian National Research Council (CNR) and in charge of the unit of Cagliari of the Istituto Officina dei Materiali, where he coordinates the theory group on the multiscale modeling of nanomaterials. A. Mattoni is author of more than 100 papers on international journals and coordinator of several projects on hybrid materials for photovoltaics and energy; he has been the principal investigator of several high-performance computing projects. A.M. developed the first interatomic force-field for classical molecular dynamics of hybrid perovskites.
Research Interests: Theoretical and computational methods for atomistic and multi-scale modeling of functional hybrid nanomaterials. Classical molecular dynamics, electronic structure methods including semi-empiricial tight binding and ab initio methods.
The symposia will cover topics related to flexible electronics, materials aspects and their application. The need for flexible, stretchable and biocompatible electronics has resulted in escalated research of nanomaterials that can have improved and new functionalities to enable new-age electronic devices. The desired characteristics can be achieved through control of bandgap, chemical composition, structural schemes, light manipulation and tunable mechanical stiffness. However, fabricating flexible electronic devices and circuits with nanomaterial is another challenge. Most of the desired substrates cannot withstand harsh conditions of traditional electronics microfabrication. Hence, direct-write methods, 3D printing, and transfer printing are gaining attention. Much effort has been poured in understanding underlying mechanisms and process parameters of emerging fabrication techniques. Novel functional materials together with new ways of fabrication are enabling exciting new class of devices for applications in wearables, soft robotics, sensors, human-machine interface and healthcare to help address important societal challenges.
This symposium aims to bring together experts from across the globe to discuss latest research and provide platform for potential collaborations in the following exciting topics.
- Electronic skin
- Self-healable materials
- Soft robotics and actuators
- Flexible and stretchable materials and devices
- Wearable (on-body or in-body) sensors, devices and power sources
- Healthcare and biomedical applications
- Conformable hybrid sensors and devices
- Flexible inorganic hybrid electronics
- Mechanics and design of wearable and stretchable electronics
- Nature inspired devices and systems
- Up-scaling: from small area cells to large area modules
Carlos Sánchez-Somolinos holds a CSIC Research Scientist position at INMA where he leads the Advanced Manufacturing Laboratory. His expertise and scientific objectives are focused on the development of polymers and their processing through advanced manufacturing techniques (direct laser writing, inkjet and 3D printing) in the search of polymeric surfaces or functional systems of interest in the areas of optics, biomedicine and soft robotics. He has recently developed at INMA the 4D printing of liquid crystal elastomers, a technique that introduces intelligent character to 3D printed structures, programing,though additive manufacturing, material response to external stimuli. He has published more than 80 papers in internationally recognized journals, and 5 book chapters. He is coinventor in 18 patents, almost all of them with Industry as co-proprietary and one of them leading to the formation of a spin-off company. Very much focused on the transfer of technology, he has undertaken lines of research in the functionalization of surfaces in direct collaboration with Industries (Bosch -BSH Spain- and Dupont Lightstone). He has previously participated in five EU projects, one of them as a PI at CSIC (FP7-SME-2013, ID.: 605934), and has led several National and Regional Research projects and contracts, some of them fully financed by Industry. Currently, he is coordinator of the PRIME FET-OPEN H2020 project, dedicated to the development of a platform of materials and advanced manufacturing techniques to create active and easy-to-operate microfluidic devices (ID: 829010). He is also coordinator of the STORM-BOTS ITN H2020 project on soft robotics of liquid cryistal elastomers (ID: 956150). In 2017 he was awarded with the Prize of the Royal Academy of Sciences of Zaragoza (Physics Section).
The key to understanding, improving and using functional materials is a detailed investigation and interpretation of the underlying microscopic and nanoscopic structure, materials properties and dynamic effects. Therefore, microscopy techniques such as scanning probe-, electron- and optical microscopy are crucial tools. Recent advances in instrumentation and measurement techniques have enabled a detailed analysis of structure-function relationships in functional nanostructures. Properties such as local strain, the impact of grain boundaries on photoluminescence and charge transport, local chemical environments, time-resolved ionic movement and spatially-resolved charge carrier dynamics are being studied to better understand these materials and optimise their properties, which ultimately dictate device performance.
In this symposium we will discuss novel measurement approaches and advances in instrumentation that enable a deeper understanding of functional materials. A particular focus will be on in-situ and in-operando methods as well as approaches which combine and compare complementary techniques. A wide range of functional materials will be considered, for example those related to energy harvesting and storage applications, solid state catalysts, and domain wall electronics.
The aim is to bring together experts from different fields of microscopy on functional materials to stimulate discussions, cross-disciplinary learning and collaborations.
Sponsored by
- Scanning probe microscopy
- Optical microscopy and spectroscopy
- Electron microscopy
- Imaging
Stefan Weber (born 1981) studied physics at the University of Konstanz. For his PhD thesis, he joined the Max Planck Institute for Polymer Research in 2007, where he studied organic electronic materials with atomic force microscopy in an international German-Korean research-training group. He then went to University College Dublin, where he studied high-resolution force microscopy at liquid-solid interfaces. Since 2012 he has been group leader at the MPI-P and, since 2014, a junior professor in the physics department of the Johannes Gutenberg University Mainz. Since his doctoral thesis, he has been working on the application and further development of force microscopy methods. He aims at understanding basic mechanisms in nanostructures as found e.g. in solar cell materials.
Prof. Rodriguez graduated from North Carolina State University (Raleigh, USA) with a PhD in Physics in 2003 and subsequently held postdoctoral appointments at North Carolina State University and at Oak Ridge National Laboratory and the Center for Nanophase Materials Sciences (Oak Ridge, USA). In 2007, he received an Alexander von Humboldt fellowship to conduct research at the Max Planck Institute of Microstructure Physics Halle, Germany). Brian joined University College Dublin in January, 2009 as a Lecturer in Nanoscience at the Conway Institute of Biomolecular and Biomedical Research. In October, 2011, he was appointed to the School of Physics.
Sascha is a Tenure-Track Assistant Professor in Physical Chemistry and Head of the Laboratory for Energy Materials at EPFL (Switzerland), while he is also maintaining strong ties with the Harvard community and in particular Winthrop House which he regularly visits as NRT and SCR member.
His team employs light-matter interactions to understand the next generation of soft semiconductors with the overarching goal of maximizing energy efficiency for a sustainable future by unlocking applications ranging from flexible light-weight solar cells & displays all the way to entirely new applications in quantum information processing.
Previously, he was a research group leader and Rowland Fellow at Harvard University’s Rowland Institute. Before starting his lab at Harvard, Sascha studied Chemistry at Heidelberg University (Germany) and completed a PhD in Physics at the University of Cambridge (UK), where he subsequently worked as EPSRC Doctoral Prize Fellow.
Libai Huang is currently a Professor of Chemistry at Purdue University. She received her B.S. from Peking University in 2001 and her Ph.D. from University of Rochester in 2006. She joined the Purdue faculty in 2014. Her research program is aimed at directly imaging energy and charge transport with femtosecond time resolution and nanometer spatial resolution to elucidate energy and charge transfer mechanisms. www.chem.purdue.edu/huang
Dr. Bryan D. Huey is a Professor and the Department Head of Materials Science and Engineering at the University of Connecticut (arrived 2004). This followed 18 months as an NRC fellow at NIST, 3 years as a postdoc at Oxford, a PhD at UPenn (1999), and a BS at Stanford, all working in the field of materials science emphasizing nanoscale materials property measurements. His research focuses on the development and application of advanced variations of AFM especially for measuring and mapping electronic, piezoelectric, photovoltaic, and mechanical properties at the nanoscale. He has nearly 150 publications, including articles in Science, Nature, and PNAS over the past 5 years. Huey was one of 5 co-organizers for the ~7000 attendee Fall 2019 MRS annual meeting, one of 3 co-organizers for the 2017 US-Japan Piezoelectrics and Dielectrics Symposium, and previously served as the Chair of the 1200+ member Basic Science Division of the American Ceramic Society. Huey is presently the 2nd Vice-Chair for the University Materials Council, the organization of MSE department heads in North America, in line to become the Chair in 2023.
Joseph M. Luther obtained B.S. degrees in Electrical and Computer Engineering from North Carolina State University in 2001. At NCSU he began his research career under the direction of Salah Bedair, who was the first to fabricate a tandem junction solar cell. Luther worked on growth and characterization high-efficiency III-V materials including GaN and GaAsN. His interest in photovoltaics sent him to the National Renewable Energy Laboratory (NREL) to pursue graduate work. He obtained a Masters of Science in Electrical Engineering from the University of Colorado while researching effects of defects in bulk semiconductors in NREL�s Measurements and Characterization Division. In 2005, He joined Art Nozik�s group at NREL and studied semiconductor nanocrystals for multiple exciton generation for which he was awarded a Ph.D. in Physics from Colorado School of Mines. As a postdoctoral fellow, he studied fundamental synthesis and novel properties of nanomaterials under the direction Paul Alivisatos at the University of California and Lawrence Berkeley National Laboratory. In 2009, he rejoined NREL as a senior research scientist. His research interests lie in the growth, electronic coupling and optical properties of colloidal nanocrystals and quantum dots.
Ivan Scheblykin obtained Ph.D. in 1999 from Moscow Institute of Physics and Technology and Lebedev Physical Institute of Russian Academy of Sciences on exciton dynamics in J-aggregates. After a postdoctoral stay in the KU Leuven, Belgium, he moved to Sweden to start the single molecule spectroscopy group at the Division of Chemical Physics in Lund University where he became a full professor in 2014. His interests cover fundamental photophysics of organic and inorganic semiconductors and, in particular, energy transfer, charge migration and trapping. The general direction of his research is to comprehend fundamental physical and chemical processes beyond ensemble averaging in material science and chemical physics using techniques inspired by single molecule fluorescence spectroscopy and single particle imaging.
The development, understanding and design of materials with efficient pathways for conversion of sunlight into other useful forms of energy is a grand challenge. Experimental and theoretical spectroscopic techniques are essential for probing light-matter interactions fundamental to energy conversion phenomena, and can drive the development of new routes towards tuning optoelectronic properties of energy materials. Moreover, physical and chemical intuition gained from spectroscopy provides a roadmap towards the design of bespoke materials for specific applications, such as photovoltaics, photocatalysis, electronics and energy storage.
This symposium proposes to bring together theorists and experimentalists to showcase recent progress in spectroscopic methods and understanding of light-matter interactions and excited states phenomena in complex energy materials. Topics will range from method development and novel spectroscopic techniques to excited states phenomena and materials design, covering a wide range of complex energy materials.
- Light-matter interactions
- Excited states phenomena
- Materials design
- Ultrafast spectroscopy
- Novel spectroscopic methods
- Energy materials
Laura Herz is a Professor of Physics at the University of Oxford. She received her PhD in Physics from the University of Cambridge in 2002 and was a Research Fellow at St John's College Cambridge from 2001 - 2003 after which she moved to Oxford. Her research interests lie in the area of organic and organic/inorganic hybrid semiconductors including aspects such as self-assembly, nano-scale effects, energy-transfer and light-harvesting for solar energy conversion.
Paulina Plochocka, Directrice de recherché de 2e classe (DR2) in Laboratoire National des Champs Magnétiques Intenses (LNCMI), CNRS in Toulouse.
P. Plochocka obtained her PhD cum-laude in 2004 at the University of Warsaw working on the dynamics of many-body interactions between carriers in doped semi-magnetic quantum wells (QW). During her first post doc at Weizmann Institute of science, she started working on the electronic properties of a high mobility 2D electron gas in the fractional and integer quantum Hall Effect regime. She continued this topic during second post doc in LNCMI Grenoble, where she was holding individual Marie Curie scholarship. At the same time, she enlarged her interest of 2D materials towards graphene and other layered materials as TMDCs or black phosphorus. In 2012 she obtained permanent position in LNCMI Toulouse, where she created the Quantum Electronics group, which investigates the electronic and optical properties of emerging materials under extreme conditions of high magnetic field and low temperatures. Examples include semiconducting layer materials such as transition metal dichalcogenides, GaAs/AlAs core shell nanowires and organic inorganic hybrid perovskites.
Organic semiconductors have the potential to produce low-cost thermoelectric materials that can easily be processed into thin films with mechanical properties that are amenable to wearables and waste heat capture in consumer products. As yet, the thermopower of n- and p-type doped organic semiconductors is too low for commercialization and lower than that of inorganic semiconductors. Organic thermoelectrics has seen a surge in research interest in recent years and the progress in terms of performance has been encouraging. This progress has sparked the interest from a wide range of disciplines.
This symposium invites contributions from chemistry, physics, materials science, and related disciplines to advance the field of organic thermoelectrics. Contributions that address aspects of engineering and processing are also explicitly welcomed.
- Modelling and theory of doping, charge transport and thermoelectrics
- Novel chemical structures for efficient thermoelectrics
- Organic/inorganic and hybrid thermoelectrics
- Dopants and Doping strategies
- Thermal transport
- Flexible and conformable thermoelectrics
- N-type materials for organic thermoelectrics
- Composites and blends for hybrid thermoelectrics
Jan Anton Koster received his PhD in Physics from the University of Groningen in 2007. After his PhD, he worked as a postdoc at the universities of Cambridge and Eindhoven. Having obtained a VENI grant for organic solar cell modelling, he moved back to Groningen to continue his work on organic semiconductors. In 2013 he became a tenure-track assistant professor and was promoted to associate professor (with ius promovendi) at the University of Groningen in 2017. Currently, his main research interests include hybrid perovskite solar cells, organic solar cells and organic thermoelectrics.
Mariano Campoy Quiles´s research is devoted to the understanding and development of solution processed semiconductors for energy and optoelectronic applications. He and his team have built substantial research efforts in two application areas, solar photovoltaic (light to electric) and thermoelectric (heat to electric) energy conversion based on organic and hybrid materials. He studied physics at the Univesity of Santiago de Compostela, obtained his PhD in experimental physics from Imperial College London, and since 2008 he leads his team at the Institute of Materials Science of Barcelona.
-
Thuc-Quyen Nguyen is a professor in the Center for Polymers and Organic Solids and the Chemistry & Biochemistry Department at University of California, Santa Barbara (UCSB). She received her Ph.D. degree in physical chemistry from the University of California, Los Angeles, in 2001 under the supervision of Professor Benjamin Schwartz. Her thesis focused on photophysics of conducting polymers. She was a research associate in the Department of Chemistry and the Nanocenter at Columbia University working with Professors Louis Brus and Colin Nuckolls on molecular self-assembly, nanoscale characterization and molecular electronics. She also spent time at IBM Research Center at T. J. Watson (Yorktown Heights, NY) working with Richard Martel and Phaedon Avouris. Her current research interests are structure-function-property relationships in organic semiconductors, sustainable semiconductors, doping in organic semiconductors, interfaces in optoelectronic devices, bioelectronics, and device physics of OPVs, photodetectors, and electrochemical transistors. Recognition for her research includes 2005 Office of Naval Research Young Investigator Award, 2006 NSF CAREER Award, 2007 Harold Plous Award, 2008 Camille Dreyfus Teacher Scholar Award, the 2009 Alfred Sloan Research Fellows, 2010 National Science Foundation American Competitiveness and Innovation Fellows, 2015 Alexander von Humboldt Senior Research Award, 2016 Fellow of the Royal Society of Chemistry, 2015-2019 World’s Most InfluentialScientific Minds; Top 1% Highly Cited Researchers in Materials Science by Thomson Reuters and Clarivate Analytics, 2019 Fellow of the American Association for the Advancement of Science (AAAS), 2023 Wilhelm Exner Medal from Austria, 2023 Fellow of the US National Academy of Inventors, 2023 de Gennes Prize in Materials Chemistry from the Royal Society of Chemistry, 2023 Elected Member of the US National Academy of Engineering, 2024 Fellow of the European Academy of Sciences, and 2025 ACS Henry H. Storch Award in Energy Chemistry.