Colloidal semiconductor nanocrystals (NCs), also known as colloidal quantum dots, have become essential building blocks of many different optoelectronic devices, e.g. efficient photodetectors and vivid color screen displays, and are playing a pivotal role for the development of future quantum technologies, e.g. highly bright sources of single and entangled photons. These novel quantum nanomaterials offer a combination of tunable optical properties as well as compatibility to low-cost solution-based processing. Perovskite (APbX3, A=MA,FA,Cs; X=Cl, Br, I) nanocrystals are the latest generations of QDs and despite some similarities with the conventional II-VI and III-V QDs, a rather new mindset is required to address their optical properties and unveil their potential in optoelectronics and quantum technologies.
This symposium aims at bringing together experimentalists and theoreticians who are investigating various fundamental processes in quantum confined perovskite nanomaterials, from the synthesis and optical characterization down to the single particle/photon level, to theoretical modelling and device applications. It provides a forum for discussing the latest scientific discoveries in these exciting new research areas bridging material science with optoelectronics and quantum technologies
- Chemistry: synthesis methods, core-shell structures, surface chemistry, self-assembly, structural characterization, lead-free metal halide nanocrystals
- Optical spectroscopy: carrier dynamics at ensemble and single dot level, stimulated emission, photon statistics
- Theory: exciton-phonon coupling, fine-structure splitting, molecular dynamics of ligands and structure dynamics
- Devices: LEDs, LCD displays, solar cells, lasers, photodetectors, scintillators
Maksym Kovalenko has been a tenure-track Assistant Professor of Inorganic Chemistry at ETH Zurich since July 2011 and Associate professor from January 2017. His group is also partially hosted by EMPA (Swiss Federal Laboratories for Materials Science and Technology) to support his highly interdisciplinary research program. He completed graduate studies at Johannes Kepler University Linz (Austria, 2004-2007, with Prof. Wolfgang Heiss), followed by postdoctoral training at the University of Chicago (USA, 2008-2011, with Prof. Dmitri Talapin). His present scientific focus is on the development of new synthesis methods for inorganic nanomaterials, their surface chemistry engineering, and assembly into macroscopically large solids. His ultimate, practical goal is to provide novel inorganic materials for optoelectronics, rechargeable Li-ion batteries, post-Li-battery materials, and catalysis. He is the recipient of an ERC Consolidator Grant 2018, ERC Starting Grant 2012, Ruzicka Preis 2013 and Werner Prize 2016. He is also a Highly Cited Researcher 2018 (by Clarivate Analytics).
Dr. Francesco Di Stasio obtained a Ph.D. in Physics at University College London (UK) in 2012. He then worked as a research Scientist at Cambridge Display Technology (Sumitomo Chemical group, UK) until he undertook postdoctoral research at the Istituto Italiano di Tecnologia (IIT, Italy). In 2015 he was awarded a Marie Skłodowska-Curie Individual Fellowship at the Institute of Photonic Sciences (ICFO, Spain). Since 2020 he is Principal Investigator of the Photonic Nanomaterials group at IIT after being awarded an ERC Starting grant. Francesco is a materials scientist with more than 10 years of research experience in optoelectronics.
Current research interests and methodology: Nanomaterials for classical and non-classical light-sources: This research activity focuses on the investigation of synthetic routes to obtain highly luminescent semiconductor colloidal nanocrystals and exploit such material in light-emitting diodes (LEDs). Here, we study how chemical treatments of colloidal nanocrystals can promote enhanced performance in devices, and physico-chemical properties of nanocrystals (e.g. self-assembly and surface chemistry) can be exploited to fabricate optoelectronic devices with innovative architectures. Novel methods and materials for light-emitting diodes: The group applies materials science to optoelectronics by determining which fabrication parameter lead to enhanced performance in LEDs. In order to transition from classical to non-classical light-sources based on colloidal nanocrystals, the group is developing novel methods for controlling the deposition and positioning of an individual nanocrystals in the device. Both “top-down” and “bottom-up” approaches are investigated.
Jacky Even was born in Rennes, France, in 1964. He received the Ph.D. degree from the University of Paris VI, Paris, France, in 1992. He was a Research and Teaching Assistant with the University of Rennes I, Rennes, from 1992 to 1999. He has been a Full Professor of optoelectronics with the Institut National des Sciences Appliquées, Rennes,since 1999. He was the head of the Materials and Nanotechnology from 2006 to 2009, and Director of Education of Insa Rennes from 2010 to 2012. He created the FOTON Laboratory Simulation Group in 1999. His main field of activity is the theoretical study of the electronic, optical, and nonlinear properties of semiconductor QW and QD structures, hybrid perovskite materials, and the simulation of optoelectronic and photovoltaic devices. He is a senior member of Institut Universitaire de France (IUF).
Patanjali Kambhampati. BA Carleton College USA (1992), PHD University of Texas (USA) 1998, PDF University of Texas (USA) 1999 - 2001. Professor of Chemistry McGill University (2003 - present). Research focus of semiconductor nanostructures and femtosecond laser spectroscopy.
Brian A. Korgel is the Rashid Engineering Regents Chair Professor of Chemical Engineering at the University of Texas at Austin (USA) and works in the field of nanomaterials chemistry and complex fluids. He is Director of the Energy Institute at UT Austin. He received his PhD from UCLA in 1997 and was a post-doctoral fellow at University College Dublin, Ireland until 1998 before joining the faculty at UT Austin. He has been Visiting Professor at the University of Alicante in Spain as a Senior Fulbright Fellow, Visiting Professor at the Université Josef Fourier in France and Distinguished Visiting Professor at the Chinese Academy of Sciences in Beijing. He directs the Industry/University Cooperative Research Center for a Solar Powered Future, has co-founded two companies, Innovalight and Piñon Technologies, and serves as an Associate Editor for Chemistry of Materials. He has published more than 220 papers and has received various honors including the Professional Progress Award from the American Institute of Chemical Engineers (AIChE) and the ISHA Roy-Somiya Medal, and is a Fellow of the American Association for the Advancement of Science (AAAS).
Alex earned his Ph.D. in physics of semiconductors from Chernivtsi National University, Ukraine for his work on electronic properties of nitride semiconductor alloys.
In 2004 he joined the Quantum Semiconductors and Bionanophotonics lab at University of Sherbrooke as a postdoc, working on theoretical modeling of laser-assisted quantum well intermixing and self-assembly processes of organic monolayers on metal and semiconductor surfaces for applications in bio-sensing.
In 2008 he moved to Quantum Theory Group at National Research Council of Canada in Ottawa, where he worked on many-body problems in epitaxial and colloidal semiconductor and graphene quantum dots; in particular, simulations of multi-exciton generation, Auger processes and optical properties of nanocrystals used in hybrid polymer-semiconductor solar cells.
Alex joined Ted Sargent’s Nanomaterials for Energy Group in 2011 and worked on characterization and modeling of the semiconductor nanocrystal surfaces and developing the synthesis methods for nanomaterials with improved optical and transport properties for photovoltaics.
In 2018, Alex joined the Department of Physical and Environmental Sciences at the University of Toronto, Scarborough as an Assistant Professor in Clean Energy. His topics of interest are materials for energy storage and novel materials discovery using high-throughput experiments and machine learning.
Haizheng Zhong is a professor of photonic materials in the school of materials science and Engineering at Beijing Institute of Technology (BIT). He obtained his B.E. degree in 2003 from Jilin University, and then undertook his Ph.D. studies at the Institute of Chemistry, Chinese Academy of Sciences (ICCAS) from 2003 to 2008. During 2017/04-2017/10, he spent 6 months in UCLA as a visiting student. After that, he worked as postdoc in the University of Toronto during 2008–2010. He joined School of Materials Science & Engineering at Beijing Institute of Technology (BIT) as an associate professor in 2010 and was promoted to full professor in 2013. His current research interests are in the area of colloidal quantum dots for photonics and optoelectronics. His recent awards include Xu-Rong Xu Luminescence Best Paper Award (2013), the National Science Foundation for Excellent Young Scholars (2017), Beijing Science and Technology Award (2018, 2/10), 2019 IDW best paper award. Since 2019, he serves as senior editor for The Journal of Physical Chemistry Letters and moved to executive editor in 2020.