The remarkable evolution of halide perovskites over the past decade has revolutionized research in optoelectronics, photovoltaics, and beyond. However, challenges related to their long-term stability, toxicity, and processing have driven the emergence of a broader class of perovskite inspired materials—structures that retain key functional features of halide perovskites while offering enhanced tunability and improved environmental profiles. This symposium aims to provide a comprehensive platform for discussing the latest advancements in the design, synthesis, characterization, and application of halide perovskites and their structural analogues. We welcome contributions exploring both fundamental materials chemistry and cutting-edge device integration, spanning diverse application areas such as solar energy conversion, photocatalysis, light emission, and photodetection. Special emphasis will be placed on novel synthetic routes, stability strategies, electronic structure engineering, advanced spectroscopy, computational modelling, machine learning as well as on the role of dimensionality, defect chemistry, and heterostructures in tuning material performance to deepen the understanding of structure–property relationships
- Synthesis of thin films, nanocrystalline halide perovskites and perovskite-inspired materials and crystal growth
- Advanced spectroscopy studies, hot carriers, polarons, excitons
- Computational insights on emerging perovskite derivatives
- Defect chemistry, ionic dynamics, defect passivation
- High-throughput screening and machine learning approaches to material discovery
- Photocatalytic applications of perovskites and perovskite-inspired materials
- Indoor photovoltaics
- Low dimensional metal halide perovskites
Lorenzo obtained his PhD in Chemistry in 2003 and since 2008 is Assistant Professor at the Chemistry Department of the University of Pavia. In 2021 he was appointed Full Professor in the same department. He was the recipient of the Young Scientist Award for outstanding work in the field of perovskites at the International Conference on Perovskites held in late 2005 in Zürich, of the “Alfredo di Braccio” Prize for Chemistry 2008 of Accademia Nazionale dei Lincei awarded to distinguished under 35-year-old chemists and contributed the Journal Materials Chemistry and Chemical Communications“Emerging Investigator” issues in 2010 and 2011. He is working in several areas of solid state chemistry with particular interest in the investigation of structure–properties correlation in different kinds of functional materials, in particular electrolyte materials for clean energy, hybrid organic-inorganic perovskites and catalysis materials. He is author of more than 200 papers on international peer-reviewed journals. Since 2018 he is member of Academic Senate and Vice-Director of the Chemistry Department. He is Director of the INSTM Reference Center “PREMIO” devoted to the synthesis of innovative materials and member of the Directive Board of INSTM. Since 2014 he is member of the Academic Board of the PhD in Chemistry of Pavia University. He is Editor of Journal of Physics and Chemistry of Solids.
Gustavo de Miguel graduated in Chemistry in 2002 by the University of Cordoba, Spain. He completed his PhD Thesis in the Physical Chemistry Department of the same University in 2007 studying the molecular organization of thin films prepared at the air-water interface. After several post-doc positions in the Friedrich-Alexander University of Erlangen-Nuremberg, University of Castilla-La Mancha and the Italian Institute of Technology, he moved back to the University of Cordoba with a Ramón y Cajal five-year tenure track position, becoming Associate Professor in 2020.
Dr. de Miguel is a physical chemist with an expertise in absorption and photoluminescence spectroscopy (steady-state and time-resolved) applied to elucidate the photophysics and photochemistry of organic compounds with application in photovoltaics. In the last years, he has added a good knowledge of structural characterization of hybrid materials (perovskites) through different X-ray diffraction techniques.
He participates in National and European projects focusing on how to enhance the stability of metal halide perovskite materials for photovoltaics (SUNREY, Ref:101084422). He has contributed with about 100 publications in international peer-reviewed journals.
Petra Cameron is an associate professor in Chemistry at the University of Bath.
Janine George
Saiful Islam is Professor of Materials Science at the University of Oxford. He grew up in London and obtained his Chemistry degree and PhD from University College London. He then worked at the Eastman Kodak Labs, New York, and the Universities of Surrey and Bath.
His current research focuses on understanding atomistic and nano-scale processes in perovskite halides for solar cells, and in new materials for lithium batteries. Saiful has received several awards including the 2022 Royal Society Hughes Medal and 2020 American Chemical Society Award in Energy Chemistry. He presented the 2016 BBC Royal Institution Christmas Lectures on the theme of energy and is a Patron of Humanists UK.
https://www.uniba.it/it/docenti/listorti-andrea
Jovana V. Milíc has been an Associate Professor at the Department of Chemistry of the University of Turku in Finland since September 2024. She obtained her Dr. Sc. degree in the Department of Chemistry and Applied Biosciences at ETH Zurich, Switzerland, in 2017. She then worked as a Scientist in the Laboratory of Photonics and Interfaces at EPFL and as an Assistant Professor at the Adolphe Merkle Institute of the University of Fribourg in Switzerland. Her research is centered around bioinspired stimuli-responsive (supra)molecular materials for energy conversion, with a particular interest in photovoltaics and neuro-morphic computing for smart and sustainable (nano)technologies. For more information, refer to her website (www.jovanamilic.com).
Iván Mora-Seró (1974, M. Sc. Physics 1997, Ph. D. Physics 2004) is researcher at Universitat Jaume I de Castelló (Spain). His research during the Ph.D. at Universitat de València (Spain) was centered in the crystal growth of semiconductors II-VI with narrow gap. On February 2002 he joined the University Jaume I. From this date until nowadays his research work has been developed in: electronic transport in nanostructured devices, photovoltaics, photocatalysis, making both experimental and theoretical work. Currently he is associate professor at University Jaume I and he is Principal Researcher (Research Division F4) of the Institute of Advanced Materials (INAM). Recent research activity was focused on new concepts for photovoltaic conversion and light emission based on nanoscaled devices and semiconductor materials following two mean lines: quantum dot solar cells with especial attention to sensitized devices and lead halide perovskite solar cells and LEDs, been this last line probably the current hottest topic in the development of new solar cells.
Kai Zhu is currently a senior scientist in the Chemistry and Nanoscience Center at the National Renewable Energy Laboratory (NREL). He received his PhD degree in physics from Syracuse University in 2003. Before this position, he worked as a postdoctoral researcher in the Basic Science Center at NREL, focusing on fundamental charge carrier conduction and recombination in photoelectrochemical cells, especially dye-sensitized solar cells. Dr. Zhu’s research on dye-sensitized solar cells involves the development of advanced electrode materials/architectures, basic understanding of charge transport and recombination processes in these electrodes, and thin-film solar cell development/characterization/modeling. His recent research has centered on both basic and applied research on perovskite solar cells, including perovskite material development, device fabrication and characterization, and basic understanding of charge carrier dynamics in these cells. In addition to solar conversion applications, his research interests have also included III-Nitride wide-bandgap semiconductors for high-power blue and UV light emitting diodes and ordered nanostructured electrodes for Li-ion batteries and supercapacitors.