Motivated by the opportunity to address the challenges of toxicity and instability affecting lead-halide perovskites, researchers have been turning their attention to the development of new inorganic solar absorbers. With advances in the fields of metal halides, chalcogenides, and chalcohalides, a plethora of promising photovoltaic absorbers has been discovered, and their properties have been increasingly well understood. This exciting class of materials includes double perovskites (A2BB’X6), ABZ2 semiconductors, rudorffites, chalcogenide perovskites (ABS3), heavy pnictogen chalcogenides, and chalcohalides. Our symposium aims to facilitate a comprehensive discussion among experts in the fabrication, simulation, and characterization of this emerging class of semiconducting materials. By bringing together a range of different perspectives and skill sets, we hope to promote a deeper understanding of these new solar absorbers and to accelerate their development. We invite contributions that cover a broad range of topics, including fabrication methods (such as solution processing and thermal evaporation), characterization and the development of structure-properties relations, and photophysical studies.
- Synthesis and material development of emerging inorganic photoabsorbers
- Dry and wet thin-film processing techniques of emerging inorganic photoabsorbers
- Structural characterization and development of structure-properties relations
- Theoretical predictions of novel inorganic materials
- Charge-carrier dynamics and transport in novel inorganic materials
- Fabrication of Optoelectronic Devices