Quantum engineering is a vital breeding ground for future key technologies, from quantum computing and energy-efficient optoelectronics to medical applications. However, the search for suitable material platforms is lagging. Guidelines in the search may be performance-based, e.g., related to the efficiency and reliability of quantum-state preparation, transfer, and read-out. On the other hand, a more widespread deployment of quantum technology may also need to consider aspects such as scalability, tunability, integrability, versatility, or cost-efficiency. In this respect, halide perovskites and their related compounds of various dimensionalities invite the question whether their solution-processability, spectral tunability, strong light-matter interaction, and generally intriguing set of optical and structural properties could indeed represent a suitable material platform for quantum-engineered devices.
- Synthesis of novel halide perovskites - from colloidal nanocrystals to bulk materials (1D, 2D, and 3D)
- Static and dynamic structural properties
- Photophysics
- Spin dynamics and coherence
- Control of light and matter via chirality and light polarization
- Polaritonics and strong light-matter interaction
- Quantum-enhanced microscopy
- Quantum-engineered devices, incl. quantum-light sources
Sascha is a Tenure-Track Assistant Professor in Physical Chemistry and Head of the Laboratory for Energy Materials at EPFL (Switzerland), while he is also maintaining strong ties with the Harvard community and in particular Winthrop House which he regularly visits as NRT and SCR member.
His team employs light-matter interactions to understand the next generation of soft semiconductors with the overarching goal of maximizing energy efficiency for a sustainable future by unlocking applications ranging from flexible light-weight solar cells & displays all the way to entirely new applications in quantum information processing.
Previously, he was a research group leader and Rowland Fellow at Harvard University. Before starting his lab at Harvard, Sascha studied Chemistry at Heidelberg University (Germany) and completed a PhD in Physics at the University of Cambridge (UK), where he subsequently worked as EPSRC Doctoral Prize Fellow.
Maksym Kovalenko has been a tenure-track Assistant Professor of Inorganic Chemistry at ETH Zurich since July 2011 and Associate professor from January 2017. His group is also partially hosted by EMPA (Swiss Federal Laboratories for Materials Science and Technology) to support his highly interdisciplinary research program. He completed graduate studies at Johannes Kepler University Linz (Austria, 2004-2007, with Prof. Wolfgang Heiss), followed by postdoctoral training at the University of Chicago (USA, 2008-2011, with Prof. Dmitri Talapin). His present scientific focus is on the development of new synthesis methods for inorganic nanomaterials, their surface chemistry engineering, and assembly into macroscopically large solids. His ultimate, practical goal is to provide novel inorganic materials for optoelectronics, rechargeable Li-ion batteries, post-Li-battery materials, and catalysis. He is the recipient of an ERC Consolidator Grant 2018, ERC Starting Grant 2012, Ruzicka Preis 2013 and Werner Prize 2016. He is also a Highly Cited Researcher 2018 (by Clarivate Analytics).
Moritz Cygorek
Luisa De Marco received her PhD in Nanoscience from Università del Salento in 2010 working on nanostructured semiconductors for photovoltaics. Since 2016 she is researcher at CNR NANOTEC leading a 6-person team working on the development of low-dimensional inorganic and hybrid nanomaterials. She is author of more than 70 papers that collectively have received more than 2600 citations, with an h-index of 31. Among the publications stand out Advanced Materials, Nature Nanotechnology, Energy & Environmental Science, ACS Nano and Science Advances.
Her research interests focus on the development and engineering of hybrid and inorganic low-dimensional semiconductors having specifically tailored functional properties and on design and fabrication of optoelectronic devices.
Jacky Even was born in Rennes, France, in 1964. He received the Ph.D. degree from the University of Paris VI, Paris, France, in 1992. He was a Research and Teaching Assistant with the University of Rennes I, Rennes, from 1992 to 1999. He has been a Full Professor of optoelectronics with the Institut National des Sciences Appliquées, Rennes,since 1999. He was the head of the Materials and Nanotechnology from 2006 to 2009, and Director of Education of Insa Rennes from 2010 to 2012. He created the FOTON Laboratory Simulation Group in 1999. His main field of activity is the theoretical study of the electronic, optical, and nonlinear properties of semiconductor QW and QD structures, hybrid perovskite materials, and the simulation of optoelectronic and photovoltaic devices. He is a senior member of Institut Universitaire de France (IUF).
Bio Professional Preparation M.S. in Chemistry, with Honours, University of Bari, Italy, 1996 Ph.D. in Chemistry, University of Bari, Italy, 2001 Research interests Prof. L. Manna is an expert of synthesis and assembly of colloidal nanocrystals. His research interests span the advanced synthesis, structural characterization and assembly of inorganic nanostructures for applications in energy-related areas, in photonics, electronics and biology.
Barbara Piętka received a doctorate at the University of Warsaw in Poland and at the Université Joseph Fourier in Grenoble, France as part of international co-tutelle. She gained professional experience working in France, Switzerland and Germany. She has built a research group focused on the study of non-equilibrium Bose-Einstein condensates of exciton-polaritons at the Faculty of Physics, University of Warsaw in Poland, where she has been working since 2010.
The main topic of her interests are quantum phenomena occurring in the regime of nonlinear light-matter coupled systems. She is concentrated on semiconductor materials, two-dimensional layered materials, perovskites and dielectric structures. The most important recent success is the demonstration of a device composed of a dielectric cavity filled with liquid crystal and perovskite demonstrating a tunable non-zero Berry curvature and chiral lasing. She is looking for efficient, room-temperature solutions for non-linear information processing, single-photon computing, and photonic accelerators.
Dr. Thilo Stöferle has been a permanent Research Staff Member at the IBM Research – Zurich Laboratory since August 2007. His current research interests are quantum simulation and quantum fluids, Bose-Einstein condensates with exciton-polaritons, integrated high Q/V cavities, nanophotonic lasers and switches. Another focus is on hybrid nanocomposite quantum materials for strong-light matter interaction and opto-electronic applications.