Solution-processable two-dimensional nanomaterials (nanosheets) are attracting increasing research efforts due to their extraordinary electronic, phononic, optical, and mechanical properties, which makes them promising materials for a myriad of applications (spintronic devices, field-effect transistors, nanoscale sensors, batteries, inexpensive photodetectors, LEDs, and lasers). 2D nanomaterials can be obtained by exfoliation of bulk crystals or grown on substrates by MBE or CVD. However, these methods are not suitable to produce large amounts of free-standing 2D nanosheets and lack control over their shape and lateral dimensions. Solution-based "bottom-up" colloidal chemical methods offer an appealing alternative and are emerging as promising routes for fundamental insights as well as for applications. This symposium intends to bring together the multidisciplinary scientific community working on this nascent field and will address not only the bottom-up solution synthesis of 2D nanomaterials, but also their chemistry, physics and applications in devices.
- Advanced solution-based bottom-up synthesis of 2D nanomaterials (colloidal methods, exfoliation, metal-organic approaches)
- Physical properties of solution-based 2D nanomaterials (spectroscopy, mechanical and electronic properties, electron and spin transport)
- Chemical properties of solution-based 2D nanomaterials (chemical stability, chemical selforganization, photocatalytic activity, interaction of organic and inorganic materials)
- Self-organization of 2D nanomaterials into superstructures
- Devices based on solution-processed 2D nanomaterials (transistors, photodetectors, solar cells, LEDs, lasers)
- Theory of 2D materials (DOS, optical properties, growth mechanisms)
Celso de Mello Donega is an Associate Professor in the Chemistry Department of the Faculty of Sciences at Utrecht University in the Netherlands. His expertise is in the field of synthesis and optical spectroscopy of luminescent materials. His research is focused on the chemistry and optoelectronic properties of nanomaterials, with particular emphasis on colloidal nanocrystals and heteronanocrystals.
i
Christian Klinke studied physics at the University of Karlsruhe (Germany) where he also obtained his diploma degree in the group of Thomas Schimmel. In March 2000 he joined the group of Klaus Kern at the Institute of Experimental Physics of the EPFL (Lausanne, Switzerland). Then from 2003 on he worked as Post-Doc at the IBM TJ Watson Research Center (Yorktown Heights, USA) in the group of Phaedon Avouris. In 2006 then he became member of the Horst Weller group at the Universitiy of Hamburg (Germany). In 2007 he started as assistant professor at the University of Hamburg. In 2009 he received the German Nanotech Prize (Nanowissenschaftspreis, AGeNT-D/BMBF). His research was supported by an ERC Starting Grant and a Heisenberg fellowship of the German Funding Agency DFG. Since 2017 he is an associate professor at the Swansea University and since 2019 full professor at the University of Rostock.
David J. Norris received his B.S. and Ph.D. degrees in Chemistry from the University of Chicago (1990) and Massachusetts Institute of Technology (1995), respectively. After an NSF postdoctoral fellowship with W. E. Moerner at the University of California, San Diego, he led a small independent research group at the NEC Research Institute in Princeton (1997). He then became an Associate Professor (2001–2006) and Professor (2006–2010) of Chemical Engineering and Materials Science at the University of Minnesota, where he also served as Director of Graduate Studies in Chemical Engineering (2004–2010). In 2010, he moved to ETH Zurich where he is currently Professor of Materials Engineering. From 2016 to 2019 he served as the Head of the Department of Mechanical and Process Engineering. He has received the Credit Suisse Award for Best Teacher at ETH, twice the Golden Owl Award for Best Teacher in his department, the Max Rössler Research Prize, an ERC Advanced Grant, and the ACS Nano Lectureship Award. He is a Fellow of the American Physical Society and the American Association for the Advancement of Science, and an editorial board member for ACS Photonics and Nano Letters. His research focuses on how materials can be engineered to create new and useful optical properties.
Laurens Siebbeles (1963) is leader of the Opto-Electronic Materials Section and deputy head of the Dept. of Chemical Engineering at the Delft University of Technology in The Netherlands. His research involves studies of the motion of electrons in novel nanostructured materials that have potential applications in e.g. solar cells, light-emitting diodes and nanoelectronics. Materials of interest include organic nanostructured materials, semiconductor quantum dots, nanorods and two-dimensional materials. Studies on charge and exciton dynamics are carried out using ultrafast time-resolved laser techniques and high-energy electron pulses in combination with quantum theoretical modeling.
Vanmaekelbergh's research started in the field of semiconductor electrochemistry in the 1980s; this later evolved into the electrochemical fabrication of macroporous semiconductors as the strongest light scatterers for visible light, and the study of electron transport in disordered (particulate) semiconductors. In the last decade, Vanmaekelbergh's interest shifted to the field of nanoscience: the synthesis of colloidal semiconductor quantum dots and self-assembled quantum-dot solids, the study of their opto-electronic properties with optical spectroscopy and UHV cryogenic Scanning Tunneling Microscopy and Spectroscopy, and electron transport in electrochemically-gated quantum-dot solids. Scanning tunnelling spectroscopy is also used to study the electronic states in graphene quantum dots. More recently, the focus of the research has shifted to 2-D nano structured semiconductors, e.g. honeycomb semiconductors with Dirac-type electronic bands.