Nanomaterials are a powerhouse of innovation, and accelerating the development of new materials is vital for a sustainable society. Currently, new materials development in laboratories involves repeated cycles of conception, synthesis, and characterization, manually performed by researchers. The inclusion of machine learning, robotics, and big data into these cycles promises to revolutionize materials research and beyond. This symposium aims at bringing together experimentalists and theoreticians who are investigating various fundamental discoveries in robotic platforms, machine learning, computaional materials discovery and automated data collection. It provides a forum for discussing the latest scientific discoveries in these exciting new research areas bridging nanomaterial science with automated platforms and AI technologies
- Computational Materials Discovery
- Robotic Synthesis Platforms
- Machine Learning in Quantum Chemistry
- Automation of Calculations for Data Collection
Alex earned his Ph.D. in physics of semiconductors from Chernivtsi National University, Ukraine for his work on electronic properties of nitride semiconductor alloys.
In 2004 he joined the Quantum Semiconductors and Bionanophotonics lab at University of Sherbrooke as a postdoc, working on theoretical modeling of laser-assisted quantum well intermixing and self-assembly processes of organic monolayers on metal and semiconductor surfaces for applications in bio-sensing.
In 2008 he moved to Quantum Theory Group at National Research Council of Canada in Ottawa, where he worked on many-body problems in epitaxial and colloidal semiconductor and graphene quantum dots; in particular, simulations of multi-exciton generation, Auger processes and optical properties of nanocrystals used in hybrid polymer-semiconductor solar cells.
Alex joined Ted Sargent’s Nanomaterials for Energy Group in 2011 and worked on characterization and modeling of the semiconductor nanocrystal surfaces and developing the synthesis methods for nanomaterials with improved optical and transport properties for photovoltaics.
In 2018, Alex joined the Department of Physical and Environmental Sciences at the University of Toronto, Scarborough as an Assistant Professor in Clean Energy. His topics of interest are materials for energy storage and novel materials discovery using high-throughput experiments and machine learning.
I am an energetic, creative, female scientist with a solid expertise in Material Science and Technology. I have successfully implemented an engineering approach to guide the development of functional nanohybrids through general and simple routes. Throughout my work, I have introduced important mechanisms on the cooperative coupling of dissimilar materials in single structures, which represents a fundamental knowledge for the creation of a new-generation of nano and macro hybrid materials.
Leite is an Associate Professor in Materials Science and Engineering at UC Davis. Her group investigates materials for energy harvesting and storage, from their nano-scale structural, electrical, and optical properties to their implementation in devices. Before joining UC Davis, Leite was an associate professor at the University of Maryland, she worked for two years at NIST and was a post-doctoral scholar at Caltech (Department of Applied Physics and Materials Science). She received her PhD in physics from Campinas State University in Brazil and the Synchrotron Light Source Laboratory. Leite's work has been recognized on the cover of ~30 scientific journals, by the presentation of >140 invited talks, by the 2016 APS Ovshinsky Sustainable Energy Fellowship from the American Physical Society (APS) and the 2014 Maryland Academy of Sciences Outstanding Young Scientist Award. Leite’s research has been funded by the National Science Foundation (NSF), the Army Research Office (ARO), the Defense Advanced Research Projects Agency (DARPA), etc.
Kangming Li is a post-doctoral fellow in the Department of Materials Science and Engineering at University of Toronto. He received his PhD in Physics from Université Paris-Saclay, where he was a CEA-NUMERICS Fellow funded under the Marie Curie Actions. He was awarded the Dalla Torre Medal by the French Society for Metallurgy and Materials for his PhD work on finite-temperature magnetic effects in concentrated alloys. Currently he is using machine learning and high-throughput first principles calculations to accelerate the discovery of novel inorganic materials.
Dr. Samira Siahrostami is an Associate Professor and Canada Research Chair in the Department of Chemistry at Simon Fraser University in Canada. Prior to that, she was an associate professor (2022-2023) and assistant professor (2018-2022) in the Department of Chemistry at the University of Calgary. Prior to that, she was a research engineer (2016–2018) and postdoctoral researcher (2014–2016) at Stanford University's Department of Chemical Engineering. She also worked as a postdoctoral researcher at the Technical University of Denmark from 2011 to 2013. Her work uses computational techniques such as density functional theory to model reactions at (electro)catalyst surfaces. Her goal is to develop more efficient catalysts for fuel cells, electrolyzers, and batteries by comprehending the kinetics and thermodynamics of reactions occurring at the surface of (electro)catalysts. Dr. Siahrostami has written more than 100 peer-reviewed articles with an h-index of 47 and over 13,000 citations. She has received numerous invitations to give talks at universities, conferences, and workshops around the world on various topics related to catalysis science and technology. Dr. Siahrostami is the recipient of the Environmental, Sustainability, and Energy Division Horizon Prize: John Jeyes Award from the Royal Society of Chemistry (RSC) in 2021. She received the Tom Zeigler Award and the Waterloo Institute in Nanotechnology Rising Star award in 2023. She has been named as an emerging investigator by the RSC in 2020, 2021 and 2022. Dr. Siahrostami's contribution to energy research was recognized in the most recent Virtual Issue of ACS Energy Letters as one of the Women at the forefront of energy research in 2023. She is currently the board member of the Canadian Catalysis Foundation and editor of Chemical Engineering Journal (CEJ) and APL Energy journal (AIP Publishing).
Born June 23, 1966 in Meppel, The Netherlands
Professor in Theoretical Chemistry, Vrije Universiteit Amsterdam, The Netherlands
Ph. D. (cum laude) University of Groningen (1993), postdoctoral stays at NASA Ames (1994-1995) and at the University of Odense (1996-1997). Professor at Vrije Universiteit Amsterdam (1998-present). Visiting professor stays at University of Strasbourg and at Pacific Northwest Laboratories. Awards: KNCV Clemens Roothaan Prize (1996), NWO vici (2005), WATOC Dirac Medal (2006).
Main research Interests
1. Subsystem electronic structure methods
2. Reducing the time-to-solution of computational models
3. Development and application of relativistic computational chemistry techniques