Sulfur cathodes are promising due to their high theoretical energy density, low price and improved sustainability and safety with respect to conventional lithium-ion batteries. However, several challenges need to be overcome before sulfur-based batteries can be deployed commercially. These challenges include the low utilization of active materials, a poor cycle life and low system efficiency. To overcome these challenges and achieve next-generation high-energy Li–S, Na-S or alternative S-based batteries, new components and further cell development and characterization are required.
- New composite nanomaterials as the cathode to enhance the battery cycle life and kinetics
- Anode materials and anode-electrolyte interface engineering
- Electrolytes and additives to improve electrochemical performance (and safety)
- Solid electrolytes (gels, solid polymers, inorganic ceramics and inorganic–organic composites)
- Insights into the sulfur reaction mechanism(s) using in situ or ex situ characterization techniques.
- Pouch cell manufacturing, including high-loading electrode fabrication, electrolyte filling or cell activation.
- Modeling of the electrochemical performance or aging mechanisms
- Recycling and self-healing of batteries and components
- Sustainable materials for sulfur-based batteries and life cycle assessment
Andreu Cabot received his PhD from the University of Barcelona in 2003. From 2004 to 2007, he worked as a postdoctoral researcher in Prof. A. Paul Alivisatos group in the University of California at Berkeley and the Lawrence Berkeley National Laboratory. In 2009 he joined the Catalonia Institute for Energy Research – IREC, where he is currently ICREA Research Professor. His research interests include the design and preparation of nanomaterials, the characterization of their functional properties and their use in energy technologies.
Pascale Chenevier is a research professor (« directrice de recherche ») at CEA in Grenoble, where she designs nanomaterials for the new technologies of energy (thermoelectrics, fuel cells, hydrogen production and batteries). She acquired her expertise in nanochemistry first in nanomedicine and biophysics, during her PhD at Bordeaux and a postdoc at Cornell University. Joining CEA in Paris-Saclay in 2003, she turned to printed electronics and electrocatalysis for hydrogen production. She started developing silicon-rich anode nanomaterials for batteries after her moving to Grenoble in 2013, and participated in the creation of a start-up company, Enwires, from 2014 to 2016. She is now part of a wide research team devoted to active material development and operando battery characterization for Li-ion, Li-S and solid-state batteries.
PhD in planning and public policies for transition (energy, ecology and urban future). Research and Development interests in next generation batteries, circular economy, sustainable value chains to address multiple risks and impacts of BEVs.
Christophe Aucher holds a doctorate in Energy and Material Sciences from both the University of Québec at Montréal (Canada, UQAM) and the Material Institute of Nantes (France, IMN). He is developing his career in the LEITAT R&D department since 2011. LEITAT is a private Technological Centre based in Barcelona and dedicated to R&D activities in the areas of biomedicine, biotechnologies, environment, surface treatments, material science, nanotechnology and energies with deep knowledge and experience in technological transfers to several industrial sectors. Christophe is leading the Energy Storage team working on solid state, lithium sulfur, metal air and lithium recovery. His team is currently involved in National and European initiatives for electrical mobility, stationary, printed electronic and batteries recycling.
Dr Jordi Jacas obtained his PhD in Materials at Sheffield University, working on the electrical and electrochemical characterisation of electrode materials for Li-ion batteries. During his postdoc at ISIS neutron spallation source and Stockholm University, he developed new tools to characterise batteries in-situ using neutron diffraction. Dr Jacas is currently a leading researcher for the battery section at the Catalonia Institute for Energy Research. His research aims to develop new electrode materials for next-generation batteries, including Co-free, Li-S and solid-state batteries. Since 2020, he has been the coordinator of the COBRA project (H2020-875568) devoted to fabricating generation 3b Li-ion batteries for electric vehicles.
Giulia Pezzin graduated from Politecnico di Torino, Italy, with a Master’s Degree in Environmental and Land Engineering (2022).
Currently, she is a Research Fellow at Politecnico di Torino (Turin, Italy), where she is part of the Life Cycle Assessment (LCA) research group.
The Nanotechnology Research Group at the Bernal Institute is led by Professor Kevin M. Ryan who holds a Personal Chair in Chemical Nanotechnology and is Course Director of the Pharmaceutical and Industrial Chemistry Degree at the Department of Chemical and Environmental Sciences (CES), University of Limerick. Previous affiliations included Marie Curie Fellowship positions at the University of California, Berkeley, USA and Merck Chemicals Southampton, UK following BSc and PhD degrees at University College Cork. The group research Interests are in Semiconductor Nanocrystals and Nanowires with emphasis on Synthesis, Assembly and Device Applications in Energy Storage and Energy Conversion Applications. The group also studies nucleation and growth in both hard (metal, semiconductor) and soft (pharmaceutical) nanocrystal materials with emphasis on size, shape and crystal phase control.
Marc Walter received his PhD in Chemistry from ETH Zurich in 2016. From 2016 to 2021, he worked as R&D and Application Manager at Wacker Chemie, mostly focusing on silicon-based anode materials for Li-ion batteries. Since 2021 he is a Senior Manager for Technology at BASF Stationary Energy Storage pursuing the joint development of sodium-sulfur (NAS®) batteries with NGK Insulators.
Dr. Zhang Chaoqi graduated with a Ph.D. in Nanoscience from the University of Barcelona, Spain, and is currently an Associate Professor at the College of Materials Science and Engineering at Fuzhou University, China. His research interests are primarily in the electrochemical energy storage applications of functionalized nanomaterials. In his studies related to lithium-sulfur batteries, he has developed a range of functionalized nanomaterials to serve as cathode hosts in lithium-sulfur batteries, which have led to rapid lithium-sulfur reaction kinetics and suppression of the shuttle effect. To date, he has published over 30 academic papers in this field and has garnered more than 1,400 citations.