Electrocatalysis is a critical field that drives many important technological applications, including energy conversion, environmental remediation, and chemical synthesis. However, despite its widespread use, there are still significant gaps in our understanding of electrocatalytic processes at the nanoscale. In situ/operando microscopy and spectroscopy techniques, which allow for the observation of these processes in real time over several lengthscales, are crucial for bridging this gap. This symposium aims to discuss progress and challenges in the use of in-situ and operando methods to characterize electrified interfaces. Among other techniques, the symposium will provide an overview of the state-of-the-art in in-situ electrochemical scanning microscopy, operando electron microscopy, as well as in situ optical and vibrational spectroscopy to evaluate dynamic active sites and reaction pathways. The symposium will bring together leading researchers from academia and industry, providing a platform for the exchange of ideas and the exploration of new approaches and collaborations. Participants will have the opportunity to engage in lively discussions on topics ranging from fundamental mechanisms of electrocatalysis to the design and optimization of next-generation electrochemical devices.
- In situ/operando electron and scanning probe microscopy
- In situ vibrational and optical spectroscopy.
- Electrocatalytic energy conversion
Jesús Barrio Hermida received his Bachelor of Science in Chemistry from the Universidad Autónoma de Madrid (Madrid, Spain) in 2014, where he got in touch for the first time with chemical research whilst working in the synthesis and characterization of Fe and Cu coordination polymers in the Inorganic Chemistry department.
In 2016, he obtained his Master in Nanoscience and Molecular Nanotechnology from the same institution. His Master Thesis, carried out at the IMDEA Nanoscience Institute entailed the formation of controlled assemblies of plasmonic building blocks and was directed by Dr. Beatriz H. Juárez and Prof. Félix Zamora.
Due to a scholarship in the Erasmus program, he moved to the Max Planck Institute for Colloids and Interfaces (Potsdam, Germany) for pursuing his doctoral studies, and in September 2016, he joined the Ben-Gurion University of the Negev (Beer-Sheva, Israel) along with his PhD supervisor, Prof. Menny Shalom, where he obtained his PhD in May 2020. His doctoral thesis focused on the design of metal-free carbon nitride materials for photo-electrocatalytic applications.
In June 2020 he joined the Materials Department at Imperial College as a Research Associate for working along with Dr. Ifan Stephens and Prof. Magda Titirici in the design of hybrid metal-carbon composites for different electrochemical applications. In August 2023 he started his independent career as an Imperial College Research Fellow at the Chemical Engineering Deaprtment of Imperial. His research covers the synthesis of carbon-based materials for different energy-related scenarios.
Doing my BSc/MSc in Physics and PhD in an interdisciplinary program crossing the disciplines like Chemical Engineering, Nanotechnology, and Electrochemistry made me who I am today – a scientist who enjoys the challenge of multifaceted research.
I enjoy doing basic research in order to solve applied tasks. This explains my research interest in fundamental physical chemistry, e.g. oxidation and dissolution of metals and semiconductors, electrocatalysis, and electrochemistry at modified interfaces but also electrochemical engineering, e.g. development and optimization of catalyst layers in fuel cells and water electrolyzes.
Progress in basic research is often a direct outcome of previous achievements in experimental instrumentation. Hence, a significant part of my interest is in the development of new tools, e.g. electrochemical on-line mass spectrometry, gas diffusion electrode approaches, and high-throughput screening methods.
Prof. Magalí Lingenfelder is a PI with an excellent track record and a passion for atomically controlled interfaces. Her work contributes to the design of new materials by elucidating chemical processes by Scanning Probe Microscopies and Surface Sensitive Spectroscopies, including dynamic (bio) molecular recognition processes at the liquid/solid interface.
She created and led for over 10 years the Max Planck-EPFL laboratory for Molecular Nanoscience at EPFL campus in Switzerland, and is currently leading the Helvetia Institute for Science and Innovation.
She studied physical and biological chemistry at the National University of Córdoba in Argentina. In 2003, she finished her MSc thesis at the Max Planck Institute for the Solid State Research (MPI-FKF in Stuttgart, Germany) with seminal contributions to the field of metal-organic coordination networks on solid surfaces. She continued with her doctoral studies in Physics, and received the Otto Hahn medal of the Max Planck Society in 2008 for the microscopic understanding of the chiral recognition process with submolecular resolution. In her quest to study molecular recognition going from 2D to 3D complex systems, she made postdoctoral stays at the Institute of Materials Sciences in Barcelona, and at the Molecular Foundry of the Lawrence Berkeley National Lab in the US.
She is a committed mentor who directed 4 MSc theses, 5 PhD theses, and 5 postdocs. She advocates for problem-oriented interdisciplinary research, by pioneering the emerging field of BioNanoarchitectonics. She led 5 international research consortiums, delivered over 50 invited presentations, and organized 9 conferences and 4 doctoral schools. She and her team had received multiple awards and international recognitions for their creative and rigurous work on molecular recognition, chirality and operando studies at catalytic interfaces. In 2018, the Royal Society of Chemistry included her work in the first collection “Celebrating Excellence in Research: 100 Women of Chemistry”.