Perovskite solar cells (PSCs) have the potential to play a key role as future photovoltaics in the renewable generation of electricity from sunlight. For this vision to become true, currently prevailing limitations regarding the stability and scalability of PSCs need to be overcome to render the technology commercially viable. Since the power conversion efficiency (PCE) of single junction devices on a small area (∼0.1 cm2) reaches close to Shockley–Queisser limit, there is now a focus on the development of larger area perovskite solar modules. Scaling up the technology requires materials and processes that provide high homogeneity over a large area, batch-to-batch reproducibility, production yield, and low cost, which can ultimately enable a process transfer from laboratories to commercial fabrication lines. In this symposium, we will discuss various aspects of the industrialization of perovskite PV.
- Materials (composition, perovskite inks, additives, interlayers) and processes for large area deposition
- New module design and interconnection strategies
- Module characterization with advanced techniques
- Stability testing (accelerated indoor and outdoor) and failure analysis
- Circularity: life cycle analysis and recycling of perovskite PV
Dr Tom Aernouts is R&D leader of the Thin Film Photovoltaics group at imec. Over the last few years this activity has grown steadily with state-of-the-art work in organic solar cells and recently also perovskite-based photovoltaics, next to inorganic materials like Kesterites for future replacement of the currently strongly growing CIGS thin film solar cells. Also the lab environment was drastically improved with setting-up the O-line infrastructure in 2009 at imec, allowing the processing and characterization of thin film solar cells and modules with area up to 15 x 15 cm². A next upgrade in 2018 enabled to extend the device size to 35x35cm². Dr Aernouts earned his Master of Science and PhD degree in Physics (in 2006) at the Catholic University of Leuven, Belgium. Firstly, he worked on organic oligomer-based diode structures, afterwards continuing his research on organic photovoltaics at imec. There, his work focused on the processing and characterization of polymer-based organic solar cells and monolithic modules, introducing techniques like screen and inkjet printing. He has authored or co-authored more than 80 journal publications, book chapters and conference contributions. Also, his research group participates on a regular basis in a broad range of local and international projects, with the most recent example the coordination of the European H2020 project ESPResSo.
Dr. Hadjipanayi is a research scientist at the Photovoltaic Technology group in the Department of Electrical and Computer Engineering of the University of Cyprus working on the investigation of the optoelectronic characteristics and photovoltaic performance of novel solar cell devices and her latest work focuses on the characterization of perovskite-based PV and measurement protocol development.
She has received her BSc in Physics (2001) from the University of Cyprus and her DPhil (PhD) in Condensed Matter Physics (2006) from the University of Oxford. Her employment record includes a Post-Doctoral Research Associate position at the Quantum Information Processing Interdisciplinary Research Collaboration (QIP IRC), Department of Physics, University of Oxford (2006-2009) and an Associate Research Scientist post at the Energy, Environment and Water Research Centre of the Cyprus Institute (2009-2012). Her research interests lie within the area of fundamental and applied physics of novel materials which are promising for future energy-efficient technological applications, especially in the field of solar energy. More specifically and more recently, these include: Investigation of optoelectronic properties and degradation mechanisms of novel solar cell devices including multi-junction solar cells, nanostructured silicon cells, perovskites; Development of accurate standardized and non-standardised testing protocols for new solar cell technologies.
Maria has over 10 years’ experience in national and European research projects as a partner and as a Coordinator covering the full project life-cycle involvement: from initiation to implementation, monitoring and reporting. She led the efforts to attract funds and develop a new strategic infrastructure unit at the University of Cyprus, the DegradationLab, which focuses in the accurate characterization of new and emerging solar cells, and is currently the Head of this new lab (https://fosscy.eu/laboratories/degradation-lab/).
Dr. Anurag Krishna is an R&D Project Leader at Interuniversity Microelectronics Centre (IMEC) and EnergyVille, Belgium, where his research activities focus on developing perovskite module technology. Previously, he has been a Marie Skłodowska-Curie fellow in the laboratory of Prof. Anders Hagfeldt and Prof. Michael Graetzel at Ecole Polytechnique Fédérale de Lausanne, Switzerland. He obtained Ph.D. from Nanyang Technological University, Singapore. The noble mission of his research is to facilitate sustainable and affordable low-carbon and green technology solutions for the world. On the fundamental side, his research interests focus on developing hybrid materials suitable for photovoltaic, optoelectronic, and nanoelectronic devices
Dr. Quentin Jeangros received a PhD in Materials Science from EPFL in 2014 for his work on solid oxide fuel cells degradation pathways. After a postdoc between the University of Basel and the Photovoltaics and Thin Film Electronics Laboratory (PV-Lab) of EPFL on transparent conductive oxides, Quentin has overseen the "Perovskite Cells for Tandem Applications" activities at EPFL PV-Lab since early 2018. Within the laboratory headed by Prof. C. Ballif, his team consists of 6 PhD students and postdocs dedicated to the development of high-efficiency perovskite/silicon solar cells. His research activities focus on the use and development of advanced electron microscopy characterisation methods to understand and optimise the nanostructure of solar materials materials, with the aim of improving efficiency and reliability.
Sjoerd Veenstra - Program Manager Perovskite Solar Cells and Modules at TNO, partner in Solliance.
Sjoerd has a passion for photovoltaics (PV). He received his PhD from the University of Groningen (2002). Sjoerd stayed at UCSB (intern) and Cornell University (visiting scientist). He started as a researcher working on organic solar cells at the Energy research Center of the Netherlands (ECN, 2002). In 2011 he moved to Eindhoven (NL) when ECN joined the thin film PV activities of Solliance. He started working on perovskite solar cells in 2014. In 2018 ECN and TNO merged and since he works for TNO and leads the perovskite team.