The quest for sustainable and renewable energy sources has led to significant advances in the development of advanced functional nanomaterials for energy conversion and storage with a particular emphasis on light-driven processes. The use of solar power to drive such energy conversion is quite appealing to develop efficient, cost-effective, and sustainable solutions to address the current energy and environmental crisis. This symposium will cover a wide range of topics related to photo-driven energy conversion and storage, including but not limited to photocatalysis, solar fuel generation, photovoltaics, and energy storage devices. It will delve into the fundamental understanding of light-matter interactions, the design and synthesis of novel photoactive materials, as well as the development of efficient devices for energy conversion and storage. By bringing together scientists from various disciplines, the symposium aims to foster interdisciplinary collaborations to advance the development of efficient photoactive energy technologies and drive the transition towards a greener and more sustainable future. It will also serve as a platform for young researchers and students to showcase their work and gain insights from established researchers.
- Design and development of new photoactive nanomaterials
- CO2 reduction
- Hydrogen generation
- Nitrogen reduction
- Methane conversion
- H2O2 generation
Dr. Villa obtained her PhD in Chemistry from the Autonomous University of Barcelona. Then, she worked as a postdoctoral researcher at the Catalonia Institute for Energy Research (IREC) on the conversion of methane to methanol and at the Institute for Bioengineering of Catalonia (IBEC) within an ERC-Proof-of-concept (MICROCLEANERS). In 2018, she joined the Advanced Functional Nanorobots center at the University of Chemistry and Technology (Czech Republic), where she worked as Senior Scientist for three years. Since 2021, she is leading a research group on advanced photocatalytic materials for energy and environmental applications at the Institute of Chemical Research of Catalonia (ICIQ).
Katherine has a strong multidisciplinary profile gained by working at 8 research centers, Colombia, Spain, Czech Republic, and Belgium. Her research areas span from water decontamination, hydrogen generation, selective oxidation processes to light-driven micro/nanoswimmers. She has received important recognitions (MSCA-UNIPD-COFUND, Beatriu de Pinós, Ramón y Cajal, la Caixa Junior Leader, etc) as well as national and international competitive funding, including an ERC Starting Grant 2022 for her project (PhotoSwim).
Her research interests include photocatalysis, nanomaterials, renewable energy, micro/nanomotors, and environmental remediation.
James Durrant is Professor of Photochemistry in the Department of Chemistry, Imperial College London and Ser Cymru Solar Professor, University of Swansea. His research addresses the photochemistry of new materials for solar energy conversion targeting both solar cells (photovoltaics) and solar to fuel (i.e.: artificial photosynthesis. It is based around employing transient optical and optoelectronic techniques to address materials function, and thereby elucidate design principles which enable technological development. His group is currently addressing the development and functional characterisation of organic and perovskite solar cells and photoelectrodes for solar fuel generation. More widely, he leads Imperial's Centre for Processable Electronics, founded the UK�s Solar Fuels Network and led the Welsh government funded S�r Cymru Solar initiative. He has published over 500 research papers and 5 patents, and was recently elected a Fellow of the Royal Society
Our group focus on physical chemistry, materials science, and the application of materials for energy production, studying the synthesis-structure-property relationship of functional materials for energy production. We emphasize developing novel syntheses for advanced materials and devices for solar energy into useful forms of sustainable energy & fuels. Our research lies at the intersection between innovative approaches, fundamental studies, and applying advanced materials for solar energy conversion.
I'm an Associate Professor in the Department of Chemical Engineering at Imperial College London (ICL). My principal interests and expertise are in the science and engineering of electrochemical energy conversion, CO2 reduction, and separation processes for industrial effluent treatment and material recycling. After obtaining my MSci degree in Physics at ICL in 2007, I moved to the Department of Chemical Engineering to carry out PhD studies in electrochemical wastewater treatment through heavy metal recovery. I subsequently conducted multiple postdoctoral research projects in the same department, including in photoelectrochemical solar fuel production, waste management by electrochemical treatment of waste streams and valorisation of CO2 via conversion into fuels. Academic research projects in my group are aimed at solving industrial problems through both experimental and numerical modelling investigations.
Sophia Haussener is a Professor heading the Laboratory of Renewable Energy Science and Engineering at the Ecole Polytechnique Federale de Lausanne (EPFL). Her current research is focused on providing design guidelines for thermal, thermochemical, and photoelectrochemical energy conversion reactors through multi-physics modelling and experimentation. Her research interests include: thermal sciences, fluid dynamics, charge transfer, electro-magnetism, and thermo/electro/photochemistry in complex multi-phase media on multiple scales. She received her MSc (2007) and PhD (2010) in Mechanical Engineering from ETH Zurich. She was a postdoctoral researcher at the Joint Center of Artificial Photosynthesis (JCAP) and the Lawrence Berkeley National Laboratory (LBNL) between 2011 and 2012. She has published over 70 articles in peer-reviewed journals and conference proceedings, and 2 books. She has been awarded the ETH medal (2011), the Dimitris N. Chorafas Foundation award (2011), the ABB Forschungspreis (2012), the Prix Zonta (2015), the Global Change Award (2017), and the Raymond Viskanta Award (2019), and is a recipient of a Starting Grant of the Swiss National Science Foundation (2014).
Kevin Sivula obtained a PhD in chemical engineering from UC Berkeley in 2007. In 2011, after leading a research group in the Laboratory of Photonics and Interfaces at EPFL, he was appointed tenure track assistant professor. He now heads the Laboratory for Molecular Engineering of Optoelectronic Nanomaterials (http://limno.epfl.ch) at EPFL.
Roel van de Krol is head of the Insitute for Solar Fuels at the Helmholtz-Zentrum Berlin fuer Materialien und Energie (HZB), and professor at the Chemistry Department of TU Berlin. After earning his PhD from TU Delft in 2000 and a postdoctoral stay at M.I.T. (USA), he returned to TU Delft where he was an assistant professor until 2012. At HZB, his research focuses on the development of materials and devices for the photoelectrochemical conversion of sunlight to chemical fuels. Understanding how surface and bulk defects in thin films and nanomaterials affect light absorption, charge transport, recombination and catalytic activity is at the heart of these efforts.